CIRCULAR ECONOMY IN APPLE PROCESSING INDUSTRY: BIODIESEL PRODUCTION FROM WASTE APPLE SEEDS

Scientific paper

Authors

  • Marija B. Tasić University of Niš, Faculty of Technology, Department of Chemical Engineering, Leskovac, Serbia https://orcid.org/0000-0002-2048-1740
  • Miona S. Stanković University of Niš, Faculty of Technology, Department of Chemical Engineering, Leskovac, Serbia
  • Milan D. Kostić University of Niš, Faculty of Technology, Department of Chemical Engineering, Leskovac, Serbia https://orcid.org/0000-0002-2674-6615
  • Olivera S. Stamenković University of Niš, Faculty of Technology, Department of Chemical Engineering, Leskovac, Serbia
  • Vlada B. Veljković University of Niš, Faculty of Technology, Department of Chemical Engineering, Leskovac, Serbia and The Serbian Academy of Sciences and Arts, Belgrade, Serbia https://orcid.org/0000-0002-1671-2892

DOI:

https://doi.org/10.2298/CICEQ210819035T

Keywords:

Apple seeds, Aspen Plus®, Biodiesel, Economics, Supercritical technology, WAR®

Abstract

Apple pomace is a solid waste derived from the apple processing industry. To foster sustainability, the apple processing industry must implement the circular economy model of biorefinery and treat apple pomace as a valuable source of apple seed oil. For the first time, this study dealt with the design, economic, and potential environmental impact assessment of biodiesel production from apple seed oil obtained from apple pomace. An Aspen Plus® and WAR® software were used to evaluate the designed biodiesel production. The main production steps were the supercritical CO2 extraction, the methanolysis of apple seed oil, the methanol recovery, and the biodiesel separation. The production facility was assumed to process 24 tons of apple seeds daily. The total capital and production costs were 1.26 US$ million and 2.82 US$ million, respectively. If revenues from selling apple seed meal as cattle feed were included, a biodiesel price could be 0.39 US$/kg. The process was environmentally friendly when apple seed meal was not treated as waste.

References

FAOSTAT n.d. http://www.fao.org/faostat/en/#home (accessed March 14, 2021).

S. Bhushan, K. Kalia, M. Sharma, B. Singh, P. Ahuja, Crit. Rev. Biotechnol. (2008) 285–96.

F. Vendruscolo, F. Koch, L. Pitol, J. Ninow, Rev. Bras. Tecnol. Agroindustrial. (2007) 53–57.

N. O’Shea, A. Ktenioudaki, T. Smyth, P. McLoughlin, L. Doran, M. Auty, E. Arendt, E. Gallaghera, J. Food. Eng. (2015) 89–95.

Y. Hang, E. Woodams, Biotechnol. Lett. (1984) 763–764.

H. Liu, V. Kumar, L. Jia, S. Sarsaiya, D. Kumar, A. Juneja, Z. Zhang, R. Sindhu, P. Binod, S. Bhatia, M. Awasthi, Chemosphere (2021) 131427.

R. Walter, R. Sherman, J. Agric. Food. Chem. (1975) 1218.

W. Jewell, R. Cummings, J. Food. Sci. (1984) 407–410.

Y. Hang, C. Lee, E. Woodams, J. Food. Sci. (1982) 1851–1852.

Q. Jin, N. Qureshi, H. Wang, H. Huang, Fuel. (2019) 536–544.

S. Bhushan, S. Gupta, D. Babu, M. Sharma, P. Ahuja (Council of Scientific & Industrial Research, India) US 9 011 952 B2 (2012.).

M. Fromm, S. Bayha, R. Carle, D. Kammerer, Eur. Food. Res. Technol. (2012) 1033–1041.

S. Taylor, F. Eller, J. King, Food. Res. Int. (1997) 365–370.

W. Kolanowski, M. Zakrzewska, J. Food. Nutr. Res. (2019) 92–98.

R. Yukui, W. Wenya, F. Rashid, L. Qing, Int. J. Food. Prop. (2009) 774–779.

X. Yu, F. Van De Voort, Z. Li, T. Yue, Int. J. Food. Eng. (2007).

M. Walia, K. Rawat, S. Bhushan, Y. Padwad, B. Singh, J. Sci. Food. Agric. (2014) 929–934.

B. Fotschki, A. Jurgoński, J. Juśkiewicz, Z. Zduńczyk, Zywn. Nauk. Technol. Jakosc. (2015) 220–231.

P. Górnaś, M. Rudzińska, D. Segliņa, Ind. Crops. Prod. (2014) 86–91.

S. Isah, G. Ozbay, Front. Sustain. Food. Syst. (2020) Article 82.

L. Chrysikou, V. Dagonikou, A. Dimitriadis,S.Bezergianni,

J. Clean. Prod. (2019) 566–575.

Y. Budiman Abdurakhman, Z. Adi Putra, M. Bilad, N. Md Nordin, M. Wirzal, Chem Eng. Res. Des. (2018) 564–574.

C. Baroi, A. Dalai, Fuel. Process. Technol. (2015) 105–119.

A. Dimian, P. Iancu, V. Plesu, A. Bonet-Ruiz, J.Bonet-Ruiz, Chem. Eng. Res. Des. (2019) 198–219.

V. Marulanda, J. Clean. Prod. (2012) 109–116.

L. Rincón, J. Jaramillo, C. Cardona. Renew. Energy. (2014) 479–487.

L. Hernández-Pérez, E. Sánchez-Tuirán, K. Ojeda, M. El-Halwagi, J. Ponce-Ortega, ACS Sustain. Chem. Eng. (2019) 8490–8498.

M. Fernández Barajas Life cycle analysis of grapeseed oil biofuel in Spain, Master thesis. Universidad Politécnica de Madrid, School Of Mines And Energy, E.T.S.I de Minas y Energía, 2018.

S. Karatay, E. Demiray, G. Dönmez, Biomass. Convers. Biorefinery (2020).

S. Qin, B. Shekher Giri, A. Kumar Patel, T. Sar, H. Liu, H. Chen, A. Juneja, D. Kumar, Z. Zhang, M. Awasthi, M.Taherzadeh, Bioresour. Technol. (2021) 124496.

V. Sriram, J. Jeevahan, A. Poovannan, Int. J. Ambient. Energy (2017) 54–56.

A. Yadav, M. Emran Khan, A. Pal, Int. J. Oil Gas. Coal. Technol. (2019) 473–492.

M. Awasthi, J. Ferreira, R. Sirohi, S. Sarsaiya, B. Khoshnevisan, S. Baladi, R. Sindhu, P. Binod, A. Pandey, A. Juneja, D. Kumar, Z. Zhang, M. Taherzadeh, Renew. Sustain. Energy Rev. (2021) 110972.

G. Ferrentino, S. Giampiccolo, K. Morozova, N. Haman, S. Spilimbergo, M. Scampicchio, Innov. Food Sci. Emerg. Technol. (2020) 102428.

F. Montañés, O. Catchpole, S. Tallon, K. Mitchell, D. Scott, R. Webby, J. Supercrit. Fluids (2018) 128–136.

P. Górnaś, M. Rudzińska, Ind. Crops Prod. (2016) 329–338.

S. Saka, D. Kusdiana, Fuel (2001) 225–231.

A. West, D. Posarac, N. Ellis, Bioresour. Technol. (2008) 6587–6601.

S. Martynov, S. Brown, H. Mahgerefteh, Greenh. Gases Sci. Technol. (2013) 136–147.

J. Cristóbal, C. Caldeira, S. Corrado, S. Sala, Bioresour. Technol. (2018) 244–252.

J. Lee, B. Lee, Y. Ok, H. Lim, Bioresour. Technol. (2020) 123086.

M. Purić, B. Rabrenović, V. Rac, L. Pezo, I. Tomašević, M. Demin, LWT (2020) 109391.

P. Opyd, A. Jurgoński, J. Juśkiewicz, J. Milala, Z. Zduńczyk, B. Król, Nutrients (2017) 1091.

R. Gunes, I. Palabiyik, O. Toker, N. Konar, S. Kurultay, J. Food Eng. (2019) 9–14.

I. Bolarinwa, C. Orfila, M. Morgan, Food Chem. (2015) 437–442.

ECETOC, Cyanides of Hydrogen, Sodium and Potassium, and Acetone Cyanohydrin, JACC, Brussels (2007.).

S. Albogami, A. Hassan, N. Ahmed, A. Alnefaie, A. Alattas, L. Alquthami, A. Alharbi, Peer J. (2020) e9232.

N. Yusuf, S. Kamarudin, Energy Convers. Manag. (2013) 710–717.

S. Lee, D. Posarac, N. Ellis, Chem. Eng. Res. Des. (2011) 2626–2642.

A. Deshpande, G. Anitescu, P. Rice, L. Tavlarides, Bioresour. Technol. (2010) 1834–1843.

J. Marchetti, A. Errazu, Energy Convers. Manag. (2008) 2160–2164.

Y. Zhang, M. Dubé, D. McLean, M. Kates, Bioresour. Technol. (2003) 1–16.

T. Sakai, A. Kawashima, T. Koshikawa, Bioresour. Technol. (2009) 3268–3276.

K. Jegannathan, C. Eng-Seng, P. Ravindra, Renew. Sustain. Energy Rev. (2011) 745–751.

F. Gutiérrez Ortiz, P. de Santa-Ana, J. Supercrit. Fluids (2017) 349–358.

H. Taher, A. Giwa, H. Abusabiekeh, S. Al-Zuhair, Fuel Process. Technol. (2020) 106249.

V. Joshi, D. Sandhu, Bioresour. Technol. (1996) 251–255.

S. Morais, S. Couto, A. Martins, T. Mata, Comput. Aided Chem. Eng. (2010) 253–258.

Downloads

Published

29.09.2021 — Updated on 25.05.2022

Issue

Section

Articles

How to Cite

CIRCULAR ECONOMY IN APPLE PROCESSING INDUSTRY: BIODIESEL PRODUCTION FROM WASTE APPLE SEEDS: Scientific paper. (2022). Chemical Industry & Chemical Engineering Quarterly, 28(3), 237-245. https://doi.org/10.2298/CICEQ210819035T

Similar Articles

11-20 of 84

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)