NUMERICAL STUDY OF THE HYDRODYNAMICS AND MASS TRANSFER IN THE EXTERNAL LOOP AIRLIFT REACTOR

Scientific paper

Authors

  • Predrag Kojić University of Novi Sad, Faculty of Technology, Novi Sad, Serbia https://orcid.org/0000-0002-1842-3402
  • Jovana Kojić University of Novi Sad, Institute of Food Technology, Novi Sad, Serbia https://orcid.org/0000-0002-8816-9892
  • Milada Pezo niversity of Belgrade, Department of Thermal Engineering and Energy, "Vinča" Institute of Nuclear Sciences - National Institute of the Republic of Serbia https://orcid.org/0000-0003-3285-0520
  • Jelena Krulj University of Novi Sad, Institute of Food Technology, Novi Sad, Serbia
  • Lato Pezo University of Belgrade, Institute of General and Physical Chemistry, Belgrade, Serbia https://orcid.org/0000-0002-0704-3084
  • Nikola Mirkov University of Belgrade, Department of Thermal Engineering and Energy, "Vinča" Institute of Nuclear Sciences - National Institute of the Republic of Serbia https://orcid.org/0000-0002-3057-9784

DOI:

https://doi.org/10.2298/CICEQ210522034K

Keywords:

Airlift reactor, Hydrodynamics, Mass Transfer, Eulerian-Eulerian model, Artificial neural network model

Abstract

The objective of this study was to investigate the hydrodynamics and the gas-liquid mass transfer coefficient of an external-loop airlift reactor (ELAR). The ELAR was operated in three cases: different inlet velocities of fluids, different alcohols solutions (water, 0.5% methanol, 0.5% ethanol, 0.5% propanol and 0.5% butanol) and different concentration of methanol in solutions (0%, 0.5%, 1%, 2% and 5%). The influence of superficial gas velocity and various diluted alcohol solutions on hydrodynamics and the gas-liquid mass transfer coefficient of the ELAR was studied. Experimentally, the gas hold-up, liquid velocities and volumetric mass transfer coefficient values in the riser and the downcomer were obtained from the literature source. A computational fluid dynamics (CFD) model was developed, based on two-phase flow, investigating different liquids regarding surface tension, assuming the ideal gas flow, applying the finite volume method and Eulerian-Eulerian model. The volumetric mass transfer coefficient was determined using the CFD and artificial neural network model. The effects of liquid parameters and gas velocity on the characteristics of the gas-liquid mass transfer were simulated. These models were compared with the appropriate experimental results. The CFD model successfully simulates the influence of different alcohols regarding the number of C-atoms on hydrodynamics and mass transfer.

References

M.L. Lefrancois, C.G. Mariller, J.V. Mejane, Effectionnements aux procedes de cultures forgiques et de fermentations industrielles. Brevet d'Invention, France, no. 1 102 200. (1955).

T. Zhang, C. Wei, C. Feng, Y.Ren, H. Wu, S. Preis, Chemical Engineering & Processing: Process Intensification. 144 (2019) 107633.

S. Bun, N. Chawaloesphonsiya, F. Nakajima, T. Tobino, P. Painmanakul, Journal of Environmental Chemical Engineering, 7 (2019) 103206.

Y.X.Guo, Rathor, M.N., Ti, H.C., Chem. Eng. J. 67 (1997) 205–214.

N. Lj. Lukic, I. M. Sijacki, P. S. Kojic, S. S. Popovic, M. N. Tekic, D. Lj. Petrovic, Biochem. Eng. J. 118 (2017) 53–63.

E. Burlutskii, R. Di Felice, Int. J. of Multiphas. Flow 119 (2019) 1–13.

H. Dhaouadi, S. Poncin, J. M. Hornut, G. Wild, P. Oinas, J. Korpijarvi, Chem. Eng. Sci. 52 (1997) 3909- 3917.

P. Lestinsky, P. Vayrynen, M. Vecer, K. Wichterle,. Procedia Engineer. 42 (2012) 892 – 907.

S. M. Teli, C. Mathpati, Chinese J. Chem. Eng. 32 (2021) 39-60.

R. Salehpour, E. Jalilnejad, M. Nalband, K. Ghasemzadeh, Particuology. 51 (2020) 91-108.

Ch. Vial, S. Poncin, G. Wild, N. Midoux, Chem. Eng. Sci. 60 (2005) 5945 – 5954.

A.H. Essadki, B. Gourich, Ch. Vial, H. Delmas, Chem. Eng. Sci. 66 (2011) 3125–3132.

N. Bendjaballah, H. Dhaouadi, S. Poncin, N. Midoux, J. M. Hornut, G. Wild, Chem. Eng. Sci. 54 (1999) 5211-5221.

M. Gavrilescu, R. Z. Tudose, Chem. Eng. J. 66 (1997) 97-104.

K. Mohanty, D. Das, M. N. Biswas, Chem. Eng. J. 133 (2007) 257–264.

J. Lin, M. Han, T. Wang, T. Zhang, J. Wang, Y. Jin, Chem. Eng. J. 102 (2004) 51–59.

M. Pronczuk, K. Bizon, Chem. Eng. Sci. 210 (2019) 115231.

X. Jiang, N. Yang, B. Yang, Particuology 27 (2016) 95–101.

D. D. McClure, H. Norris, J. M. Kavanagh, D. F. Fletcher, G. W. Barton, Chem. Eng. Sci. 127 (2015) 189–201.

N. Moudoud, R. Rihani, F. Bentahar, J. Legrand, Chemical Engineering & Processing: Process Intensification 129 (2018) 118–130.

K. M. Dhanasekharan, J. Sanya, A. Jain, A. Haidari, Chem. Eng. Sci. 60 (2005) 213 – 218.

S. Roy, M. T. Dhotre, J. B. Joshi, Chem. Eng. Res. Des. 84(A8) (2005) 677–690.

Y. Shi, S. Wu, H. Ren, M. Jin, L. Wang, N. Qiao, D. Yu, Bioresource Technol. 296 (2020) 122316.

S. Sarkar, K. Mohanty, B.C. Meikap, Chem. Eng. J. 145 (2008) 69–77.

P. Kojic, R. Omorjan, Chem. Eng. Res. Des. 125 (2017) 398–407.

N. Naidoo, W.J. Pauck, M. Carsky, South African Journal of Chemical Engineering 33 (2020) 83–89.

D. Posarac, Investigation of Hydrodynamics and Mass-transfer in External-loop Airlift Reactor. University of Novi Sad, Faculty of Technology, Novi Sad, Serbia (PhD) (1988).

L. Schiller, A. Naumann,. VDI Zeitung, 77 (1935) 318–320.

A. Gupta, S. Roy, Chem. Eng. J. 225 (2013) 818–836.

A. Tomiyama, G.P. Celata, S. Hosokawa, S. Yoshida, Int. J. Multiph. Flow. 28 (2002) 1497–1519.

X. Lu, J. Yu, Y. Ding, Can J Chem Eng 98(7) (2020) 1593-1606.

R. Higbie, Trans. Am. Inst. Chern. Eng. 31 (1935) 365-389.

M. Pourtousi, P. Ganesan, J.N. Sahu, Measurement 76 (2015) 255–270.

S.V. Patankar, D.B. Spalding, Int. J. Heat Mass Transfer 15 (1972) 1787–1806.

T. Kollo, D. von Rosen, Advanced Multivariate Statistics with Matrices (Springer, Dordrecht) (2005).

L. Pezo, B.Lj. Ćurčić, V.S. Filipović, M.R. Nićetin, G.B. Koprivica, N.M. Mišljenović, Lj.B. Lević, Hem. Ind. 67 (2013) 465-475.

C.I. Ochoa-Martínez, A.A. Ayala-Aponte, LWT - Food Sci Technol 40 (4) (2007) 638-6.

M. Aćimović, L. Pezo, V. Tešević, I. Čabarkapa, M. Todosijević, Ind. Crop. Prod. 154 (15) (2020) 112752.

D. F. Fletcher, D. D. McClure, J. M. Kavanagh, G. W. Barton, App. Math. Model. 44 (2017) 25–42.

K. Schügerl, J. Lücke, U. Oels, Adv. Biochem. Eng. 7 (1977) 1-84.

G. Keitel, Untersuchungenzum Stoffaustausch in Gas-Flüssig-Dispersionen in Rührschlaufen reaktor und Blasensäule, 1978. Universität Dortmund, Dortmund, Germany (PhD Thesis).

P. S. Kojić, S. S. Popović, M. S. Tokić, I. M. Šijački, N. L. Lukić, D. Z. Jovičević, D. L. Petrović, Braz. J. Chem. Eng. 34 (2017) 493–505.

P. S. Kojić, I. M. Šijački, N. L. Lukić, D. Z. Jovičević, S. S. Popović, D. L. Petrović, Chem. Ind. Chem. Eng. Q. 22(3) (2016) 275–284.

P. S. Kojić, M. S. Tokić, I. M. Šijački, N. L. Lukić, D. L. Petrović, D. Z. Jovičević, S. S. Popović, Chemical Engineering and Technology, 38(4) (2015) 701–708.

Z. Erbay, F. Icier, J. Food Eng. 91(4) (2009) 533-541.

T. Turanyi, A.S. Tomlin, Analysis of Kinetics Reaction Mechanisms. (Springer, Berlin Heidelberg) (2014).

Downloads

Published

22.09.2021 — Updated on 25.05.2022

Issue

Section

Articles

How to Cite

NUMERICAL STUDY OF THE HYDRODYNAMICS AND MASS TRANSFER IN THE EXTERNAL LOOP AIRLIFT REACTOR: Scientific paper. (2022). Chemical Industry & Chemical Engineering Quarterly, 28(3), 225-235. https://doi.org/10.2298/CICEQ210522034K

Similar Articles

21-30 of 79

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)