RATIONAL FEEDING STRATEGIES OF SUBSTRATE AND ENZYMES TO ENZYMATIC HYDROLYSIS BIOREACTORS

Scientific paper

Authors

  • Bruna Pratto Chemical Engineering Graduate Program, Federal University of São Carlos, São Carlos, Brazil
  • Martha Suzana Rodrigues dos Santos-Rocha ederal Institute of Alagoas, Penedo, Brazil
  • Gustavo Batista Chemical Engineering Graduate Program, Federal University of São Carlos, São Carlos, Brazil https://orcid.org/0000-0002-7023-9792
  • Inti Doraci Cavalcanti-Montaño Chemistry Institute, Federal University of Goias, Goiânia, Brazil)
  • Carlos Alberto Galeano Suarez Chemistry Institute, Federal University of Goias, Goiânia, Brazil
  • Antonio José Gonçalves Cruz Chemical Engineering Graduate Program, Federal University of São Carlos, São Carlos, Brazil + Chemical Engineering Department, Federal University of São Carlos, São Carlos, Brazil
  • Ruy de Sousa Júnior Chemical Engineering Graduate Program, Federal University of São Carlos, São Carlos, Brazil + Chemical Engineering Department, Federal University of São Carlos, São Carlos, Brazil https://orcid.org/0000-0003-4916-173X

DOI:

https://doi.org/10.2298/CICEQ201202030P

Keywords:

Enzymatic hydrolysis, Fed-batch operation, Rational feeding strategies, Sugarcane straw, Unproductive lignin-enzyme bonds

Abstract

Bioreactors operating in fed-batch mode improve the enzymatic hydrolysis productivity at high biomass loadings. The present work aimed to apply rational feeding strategies of substrates (pretreated sugarcane straw) and enzymes (CellicCtec2®) to achieve sugar titers at industrial levels. The instantaneous substrate concentration was kept constant at 5% (w/v) along the fed-batch. The enzyme dosage inside the bioreactor was adjusted so that the reaction rate was not less than a pre-defined value (a percentage of the initial reaction rate – rmin). When r reached values below rmin, enzyme pulses were applied to return the reaction rate to its initial value (r0). The optimized feeding policy indicated a reaction rate maintained at a minimum of 70% of r0, based on the trade-off between glucose productivity and enzyme saving. Initially, it was possible to process a 21% (w/v) solid load, achieving 160 g/L of glucose concentration and 80% of glucose yield. It was verified that non-productive enzyme adsorption was the main reason for some reduction of hydrolysis yield regarding the theoretical cellulose-to-glucose conversion. An increment of 30 g/L in the final glucose concentration was achieved when a lignin-blocking additive (soybean protein) was used in the enzymatic hydrolysis.

References

H. Shokrkar, S. Ebrahimi, M. Zamani, Cellulose. 25 (2018) 6279–6304.

A.S. da Silva, R.P. Espinheira, R.S.S. Teixeira, M.F. de Souza, V. Ferreira-Leitão, E.P.S. Bon, Biotechnol. Biofuels. 13 (2020) 58.

K.C.S. Rodrigues, J.L.S. Sonego, A. Bernardo, M.P.A. Ribeiro, A.J.G. Cruz, A.C. Badino, Ind. Eng. Chem. Res. 57 (2018) 10823–10831.

R.D. Pereira, A.C. Badino, A.J.G. Cruz, Energy & Fuels. 34 (2020) 4670–4677.

B. Pratto, M.S.R. dos Santos-Rocha, A.A. Longati, R. de Sousa Júnior, A.J.G. Cruz, Bioresour. Technol. 297 (2020) 122494.

A.A. Modenbach, S.E. Nokes, Biomass and Bioenergy. 56 (2013) 526–544.

D.B. Hodge, M.N. Karim, D.J. Schell, J.D. McMillan, Bioresour. Technol. 99 (2008) 8940–8948.

L.J. Corrêa, A.C. Badino, A.J.G. Cruz, Bioprocess Biosyst. Eng. 39 (2016) 825–833.

D.H. Fockink, M.B. Urio, J.H. Sánchez, L.P. Ramos, Energy & Fuels. 31 (2017) 6211–6220.

M.S.R. Santos-Rocha, B. Pratto, L. Jacob, A. Colli, R. Maria, R. Garcia, A. José, G. Cruz, Ind. Crop. Prod. 125 (2018) 293–302.

Y.H. Jung, H.M. Park, D.H. Kim, J. Yang, K.H. Kim, Appl. Biochem. Biotechnol. 182 (2017) 1108–1120.

C.M. de Godoy, D.L. Machado, A.C. da Costa, Fuel. 253 (2019) 392–399.

Y.E.C. Sugiharto, A. Harimawan, M.T.A.P. Kresnowati, R. Purwadi, R. Mariyana, Andry, H.N. Fitriana, H.F. Hosen, Bioresour. Technol. 207 (2016) 175–179.

M.R. Mukasekuru, P. Kaneza, H. Sun, F.F. Sun, J. He, P. Zheng, Ind. Crops Prod. 146 (2020) 112156.

Y. Gao, J. Xu, Z. Yuan, Y. Zhang, Y. Liu, C. Liang, Bioresour. Technol. 167 (2014) 41–45.

C. Xu, J. Zhang, Y. Zhang, Y. Guo, H. Xu, J. Xu, Z. Wang, Bioresour. Technol. 292 (2019) 121993.

P. Unrean, S. Khajeeram, K. Laoteng, Appl. Microbiol. Biotechnol. 100 (2016) 2459–2470.

I.D. Cavalcanti-Montaño, C.A.G. Suarez, U.F. Rodríguez-Zúñiga, R. de Lima Camargo Giordano, R. de Campos Giordano, R. de Sousa Júnior, Bioenergy Res. 6 (2013) 776–785.

W.F. Ramirez, Process control and identification, Academic Press, Boston, 1994.

B. Pratto, R.B.A. de Souza, R. Sousa, A.J.G. da Cruz, Appl. Biochem. Biotechnol. 178 (2016) 1430–1444.

T. Ghose, Pure Appl. Chem. 59 (1987) 257–268.

G. Batista, R.B.A. de Souza, B. Pratto, M.S.R. Santos-Rocha, A.J.G. da Cruz, Bioresour. Technol. 275 (2019) 321–327.

M.S.R. Santos-Rocha, B. Pratto, R. de Sousa, R.M.R.G. Almeida, A.J.G. Cruz, Bioresour. Technol. 228 (2017) 176–185.

A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, D. Crocker, Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-510-42618., (2008).

S. Park, J.O. Baker, M.E. Himmel, P.A. Parilla, D.K. Johnson, Biotechnol. Biofuels. 3 (2010) 10.

M.G. Brondi, V.M. Vasconcellos, R.C. Giordano, C.S. Farinas, Appl. Biochem. Biotechnol. (2018) 1–13.

F. Xu, H. Ding, Appl. Catal. A Gen. 317 (2007) 70–81.

R. Sousa, M.L. Carvalho, R.L.C. Giordano, R.C. Giordano, Brazilian J. Chem. Eng. 28 (2011) 545–564.

R. Morales-Rodriguez, A.S. Meyer, K. V. Gernaey, G. Sin, Bioresour. Technol. 102 (2011) 1174–1184.

D.B. Hodge, M.N. Karim, D.J. Schell, J.D. McMillan, Appl. Biochem. Biotechnol. 152 (2009) 88–107.

J.B. Kristensen, C. Felby, H. Jørgensen, Biotechnol. Biofuels. 2 (2009) 11.

X. Zhao, L. Zhang, D. Liu, Biofuels Bioprod. Biorefining. 6 (2012) 465–482.

D. Gomes, J. Cunha, E. Zanuso, J. Teixeira, L. Domingues, Polysaccharides. 2 (2021) 287–310.

J. de Aguiar, T.J. Bondancia, P.I.C. Claro, L.H.C. Mattoso, C.S. Farinas, J.M. Marconcini, ACS Sustain. Chem. Eng. 8 (2020) 2287–2299.

L. Li, W. Zhou, H. Wu, Y. Yu, F. Liu, D. Zhu, BioResources. 9 (2014) 3993–4005.

S.C. Pereira, L. Maehara, C.M.M. Machado, C.S. Farinas, Renew. Energy. 87 (2016) 607–617.

C. Rezende, M. de Lima, P. Maziero, E. DeAzevedo, W. Garcia, I. Polikarpov, Biotechnol. Biofuels. 4 (2011) 54.

J.K. Ko, E. Ximenes, Y. Kim, M.R. Ladisch, Biotechnol. Bioeng. 112 (2015) 447–456.

C. Florencio, A.C. Badino, C.S. Farinas, Bioresour. Technol. 221 (2016) 172–180.

Published

25.08.2021 — Updated on 25.05.2022

Issue

Section

Articles

How to Cite

RATIONAL FEEDING STRATEGIES OF SUBSTRATE AND ENZYMES TO ENZYMATIC HYDROLYSIS BIOREACTORS: Scientific paper. (2022). Chemical Industry & Chemical Engineering Quarterly, 28(3), 191-201. https://doi.org/10.2298/CICEQ201202030P

Similar Articles

11-20 of 25

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)