Main Article Content

Petar D. Janjatović
Olivera A Erić Cekić
Dragan M. Rajnović
Sebastian S. Baloš
Vencislav K. Grabulov
Leposava P. Šidjanin


Dual-phase ADI material microstructure consists of different amounts and morphologies of ausferrite and free ferrite, obtained by subjecting ductile iron to specific heat treatment. Its strength is lower compared to comparable ADI materials but exhibits a higher ductility, the major disadvantage of ADI. In the current study, an unalloyed ductile iron was intercritical austenitized in two-phase regions (α+Ƴ) at four temperatures from 840 to 780 °C for 2 h and austempered at 400 °C for 1 h to obtain dual-phase ADI with different percentages of free ferrite and ausferrite. Light and scanning electron microscopy was performed for the metallographic and fracture studies, respectively. Microscopy results were correlated to tensile testing results. The results indicated that, as the amount of ausferrite present in the matrix increases, higher values of strength and lower ductility are obtained. The fracture surfaces of dual-phase ADI microstructures with 22.8% of ausferrite in their matrix have regions of quasi-cleavage fracture around last-to-freeze zones, related to the presence of ausferrite in those areas. The specimens with the highest values of ausferrite of 86.8% among the dual-phase microstructure have a dominant quasi-cleavage type of fracture.

Article Details

How to Cite
Janjatović, P. D., Erić Cekić, O. A., Rajnović, D. M., Baloš, S. S., Grabulov, V. K., & Šidjanin, L. P. (2022). MICROSTRUCTURE AND FRACTURE MODE OF UNALLOYED DUAL-PHASE AUSTEMPERED DUCTILE IRON: Scientific paper. Chemical Industry & Chemical Engineering Quarterly, 28(2), 161–167. https://doi.org/10.2298/CICEQ201222027J


W. Bingxu, Q. Feng, C. Gary. Barber, P. Yuming, C. Weiwei, W. Rui, J. Mater. Res. Technol. 9 (5) (2020) 9838-9855.

P. Janjatovic, O. Eric Cekic, L. Sidjanin, S. Balos, M. Dramicanin, J. Grbovic Novakovic, D. Rajnovic, Met. 11 (2021) 1-16.

S. Balos, I. Radisavljevic, D. Rajnovic, P. Janjatovic, M. Dramicanin, O. Eric- Cekic, L. Sidjanin, Def. Sci. J. 69 (2019), 571–576.

A. Basso, J. Sikora, Int. J. Metalcast. 6 (2012) 1-14.

R. Steiner, in ASM Handbook Vol. 1, by ASTM International, Ohio, USA, 33 (1990), p. 1005.

C. Verdu, J. Adrien, A. Reynaud, Int. J. Cast Met. Res. 18 (2005) 346–354.

A. Basso, R. Martinez, J. Sikora, Mater. Sci. Technol. 23 (2007) 1321–1326.

A. Basso, R. Martinez, J. Sikora, Mater. Sci. Technol. 25 (2008) 1271–1278.

V. Kilicli, M. Erdogan, Mater. Sci. Technol. 22 (2006) 919–928.

V. Kilicli, M. Erdogan, Int. J. Cast. Met. 20 (2007) 202–214.

J. Aranzabal, G. Serramoglia, D. Rousiere, Int. J. Cast Met. Res. 16 (2002) 185–190.

N. Wade, Y. Ueda, Trans. ISII, 21 (1981) 117–126.

C. Verdu, J. Adrien, A. Reynaud, Int. J. Cast. Met. Res. 18 (2005) 346–354.

A. Basso, J. Sikora, R. Martínez, Fatigue Fract. Eng. Mater. Struct. 36 (7) (2013) 650-659.

V. Kilicli, M. Erdogan, J. Mater. Eng. Perform. 19 (2010) 142-149.

F. Iacoviello, V. Di Cocco, M. Cavallini, Fatigue Fract. Eng. Mater. Struct. 39 (2016) 999-1011.

F. Iacoviello, V. Di Cocco, A. Rossi, M. Cavallini, Fratt. Integrita Strutt. 7 (25) (2013) 102-108.

L. D’Agostino, V. Di Cocco, O. Fernandino, D. F. Iacoviello, Process. Struct. Integr. 3 (2017) 201-207.

D.O. Fernandino, R.E Boeri, Fatigue Fract. Eng. Mater. Struct. 42 (2019) 2220-2231.

R.C. Voigt, L.M. Elderly, H.S. Chiou, AFS Trans. 94 (1986) 645–656.

T. Kobayashi, S. Yamada, Metall. Mat. Trans. A 27 (1996) 1961–1971.

A. Basso, M. Caldera, M. Chapetti, J. Sikora, ISIJ, Int. 50 (2010) 302-306.

R. Voigt, L. Eldoky, AFS Trans. 94 (1986) 645–656.

R. Martínez, R. Boeri, J. Sikora, Jornadas SAM Asociación Argentina de Materiales - IV Latin-American Colloquium on Fracture and Fatigue, Neuquen, Argentina (2000) p.615.

L. Masud, R. Martinez, S. Simison, R. Boeri, J. Mater. Sci. 38 (2003) 2971–2977.

R. Martinez, Eng. Fract. Mech. 77 (2010) 2749–2762.