IMPACT OF AIR TEMPERATURE ON DRYING CHARACTERISTICS AND SOME BIOACTIVE PROPERTIES OF KIWI FRUIT SLICES

Scientific paper

Authors

  • Fadime Begüm Tepe Department of Food Technology, Şebinkarahisar Vocational School of Technical Science, Giresun University, Giresun, Turkey and Department of Food Engineering, Faculty of Engineering, Pamukkale University, Denizli, Turkey
  • Tolga Kağan Tepe Department of Food Technology, Şebinkarahisar Vocational School of Technical Science, Giresun University, Giresun, Turkey
  • Ayten Ekinci Department of Chemistry and Chemical Processing Technologies, Vocational School of Gemerek, Sivas Cumhuriyet University, Sivas, Turkey

DOI:

https://doi.org/10.2298/CICEQ210126026T

Keywords:

ascorbic acid, antioxidant capacity, drying kinetics, kiwifruit

Abstract

Drying kinetics, ascorbic acid content (AAC), total phenolic content (TPC), and antioxidant capacity (AC) of kiwifruits at different temperatures (60 °C, 70 °C, and 80) were investigated. The drying rate and effective moisture diffusivity of kiwifruits were the highest at 80 °C. Additionally, the Parabolic model best predicts the experimental moisture ratio at 60 °C and 70 °C, while the Page model described the drying curve at 80 °C. On the other hand, the AAC, TPC, and AC of kiwifruits were significantly influenced by temperature. Degradation of AAC increased with the increment in temperature, while TPC and AC were higher at the higher temperature. The range of the AAC, TPC, and AC of fresh and dried fruits were 165.59±12.58-462.81±11.53 mg/100 g DW, 747.66±16.09-1846.87±15.52 mg/100 g GAE DW, and 0.283±0.15-1.903±0.15 mmol TE/100 g DW, respectively. The highest AAC, TPC, and AC losses were calculated as 64.22%, 59.43%, and 85.13%, respectively.

References

L. Fu, B. T. Xu, X. R. Xu, R. Y. Gan, Y. Zhang, E. Q. Xia, H. B. Li, Food Chem. 129 (2) (2011) 345-350.

N. D. Mrad, N. Boudhrioua, N. Kechaou, F. Courtois, C. Bonazzi, Food Bioprod. Process. 90 (3) (2012) 433-441.

L. Méndez-Lagunas, J. Rodríguez-Ramírez, M. Cruz-Gracida, S. Sandoval-Torres, G. Barriada-Bernal, Food Chem. 230 (2017) 174-181.

J. López, E. Uribe, A. Vega-Gálvez, M. Miranda, J. Vergara, E. Gonzalez, K. Di Scala, Food Bioprocess Technol. 3 (5) (2010) 772-777.

P. Correia, R. P. Guiné, A. C. Correia, F. Gonçalves, M. Brito, J. Ribeiro, Agric. Eng. Int.: CIGR Journal. 19 (3) (2017) 203-212.

J. Wang, H-W. Xiao, J-H. Y, J. Wang, V. Ragvahan, Food Bioprocess Technol. 12 (2019) 865-876.

Y. Shen, H. Xia, Z. Lei, D. Liang, Advances in Engineering Research. 63 (2018) 1819-1822.

AN. Kim, HJ. Kim, J. Chun, H.J. Heo, W.L. Kerr, SG. Choi, LWT-Food Sci. Technol. 89 (2018) 535-541.

J. Wang, S.K. Vanga, V. Raghavan, LWT-Food Sci. Technol. 107 (2019).

A. Kaya, O. Aydın, S. Kolaylı, Food Bioprod. Process. 88 (2-3) (2010) 165-173.

T. Orikasa, S. Koide, S. Okamoto, T. Imaizumi, Y. Muramatsu, J. I. Takeda, T. Shiina, A. Tagawa, J. Food Eng. 125 (2014) 51-58.

C. S. Gammon, R. Kruger, C. A. Conlon, P. R. von Hurst, B. Jones, W. Stonehouse, Nutr., Metab. Cardiovasc. Dis. 24 (1) (2014) 91-99.

N. Motohashi, Y. Shirataki, M. Kawase, S. Tani, H. Sakagami, K. Satoh, T. Kurihara, H. Nakashima, I. Musci, A. Varga, J. Molnár, J. Ethnopharmacol. 81 (3) (2002) 357-364.

W. H. Chang, J. F. Liu, Int. J. Food Sci. Nutr. 60 (8) (2009) 709-716.

Y. I. Mahmoud, Biomed. Pharmacother. 94 (2017) 206-218.

W. Kang, H. Yang, H. J. Hong, C. H. Han, Y. J. Lee, Korean J. Vet. Res. 52 (4) (2012) 270-280.

M. Maskan, J. Food Eng. 48 (2) (2001) 177-182.

R. Thuwapanichayanan, S. Prachayawarakorn, J. Kunwisawa, S. Soponronnarit, LWT-Food Sci. Technol. 44 (6) (2011) 1502-1510.

P. K. Wankhade, R. S. Sapkal, V. S. Sapkal, Procedia Eng. 51 (2013) 371-374.

R. L. Monteiro, B. A. Carciofi, J. B. Laurindo, J. Food Eng. 178 (2016) 1-11.

P. Fellows, Food Processing Technology Principles and Practice, second ed. Boca Raton, Florida (2000).

C. Ratti, J. Food Eng. 49(4) (2001) 311-319.

A. R. Celma, F. Cuadros, F. López-Rodríguez, Food Bioprod. Process. 90 (2) (2012) 224-234.

H. Darvishi, A. R. Asl, A. Asghari, M. Azadbakht, G. Najafi, J. Khodaei, J. Saudi Soc. Agric. Sci. 13 (2) (2014) 130-138.

H. Yoğurtçu, Fırat Üniv. Eng. Sci. J. 26 (1) (2014) 27-33.

A. Fijalkowska, M. Nowacka, A. Wiktor, M. Sledz, D. Witrowa‐Rajchert, J. Food Process Eng. 39 (3) (2016) 256-265.

C. Ricce, M. L. Rojas, A. C. Miano, R. Siche, P. E. D. Augusto, Food Res. Int. 89 (2016) 701-708.

X. D. Chen, A. S. Mujumdar, X. D. Chen, A. S. Mujumdar (Eds.) Drying technologies in food processing. Blackwell, Oxford (2008).

E. Seyedabadi, M. Khojastehpour, M.H Abbaspour-Fard, Int. J. Food Prop. 20 (2017) 36-49.

H. Jarahizadeh, S.T. Dinani, Food Sci. Biotechnol. 28 (2) (2019) 365-376.

Y. Kumar, V.S. Sharanagat, L. Singh, P.K. Nema, J. Food Process. Preserv. 44 (9) (2020) e14639.

G. Akar, I. Barutçu Mazı, J. Food Process. Eng. 42 (3) (2019) e13011.

E. Demiray, A. Seker, Y. Tulek, Heat Mass Transf. 535 (2017) 1817-1827.

M. Zarein, S. H. Samadi, B. Ghobadian, J. Saudi Soc. Agric. Sci. 141 (2015) 41-47.

J. Bi, A. Yang, X. Liu, X. Wu, Q. Chen, Q. Wang, X. Wang, LWT-Food Sci. Technol. 602 (2015) 1136-1142.

M. Śledź, M. Nowacka, A. Wiktor, D. Witrowa-Rajchert, Food Bioprod. Process. 91 (4), (2013) 421-428.

M. Zhang, J. Tang, A. S. Mujumdar, S. Wang, Trends Food Sci. Technol. 17 (10) (2006) 524-534.

A. O. Omolola, A. I. Jideani, P. F. Kapila, Int. J. Agric. Biol. Eng. 76 (2014) 107-113.

Crank, Mathematics of Diffusion, Clarendon Press, Oxford (1975).

A. Dönmez Drying Kinetics of Resveratrol and Water-Soluble Vitamins of Some Grape Varieties Grown in Denizli Region, MSc. Thesis, Pamukkale University, Institute of Science, Denizli, (2015) Turkey.

M. R. Otağ, Determination of Some Properties and Resveratrol Content of Some Grape Varieties Grown in Denizli Çal Region During Different Ripening Period and After Drying Process, PhD Thesis, Pamukkale University, Institute of Science, Denizli, (2015) Turkey.

V. L. Singleton, J. A. Rossi, Am. J. Enol. Vitic. 16 (3) (1965) 144-158.

K. Thaipong, U. Boonprakob, K. Crosby, L. Cisneros-Zevallos, D. H. Byrne, J. Food Compos. Anal. 19 (6-7) (2006) 669-675.

E. Horuz, H. Bozkurt, H. Karataş, M. Maskan, Food Chem. 230 (2017) 295-305.

S. K. Chin, E. S. Siew, W. L. Soon, Int. Food Res. J. 22 (6) (2015) 2188-2195.

H. Leontowicz, M. Leontowicz, P. Latocha, I. Jesion, Y. S. Park, E. Katrich, D. Barasch, A. Nemirovski, S. Gorinstein, Food Chem. 196 (2016) 281-291.

A. Vega-Gálvez, K. Di Scala, K. Rodríguez, R. Lemus-Mondaca, M. Miranda, J. López, M. Perez-Won, Food Chem. 117 (4) (2009) 647-653.

S. M. Oliveira, I. N. Ramos, T. R. Brandão, C. L. Silva, J. Food Process. Preserv. 39 (6) (2015) 2485-2496.

P. H. S. Santos, M. A. Silva, Drying Technol. 26 (12) (2008) 1421-1437.

N. Izli, G. Izli, O. Taskin, J. Food Meas. Charact. 11 (1) (2017) 64-74.

M. C. Garau, S. Simal, C. Rossello, A. Femenia, Food Chem. 104 (3) (2007) 1014-1024.

N. S. Kerkhofs, C. E. Lister, G. P. Savage, Plant Foods Hum. Nutr. 60 (3) (2005) 17-121.

R. K. Toor, G. P. Savage, Food Chem. 94 (1) (2006) 90-97.

V. Sant’Anna, P.D. Gurak, L.D.F. Marczak, I.C. Tessaro, Dyes Pigm. 98 (3) (2013) 601-608.

J. Wang, HW. Xiao, XM. Fang, A.S. Mujumdar, S.K. Vidyarthi, L. Xie, Drying Technol. (2020) 1-14.

T.K. McGhie, A.D. Ainge, J. Agric. Food Chem. 50 (2002) 117-121.

İ. Doymaz, Int. J. Green Energy. 15 (11) (2018) 622-628.

İ. Doymaz, J. Food Process. Preserv. 35 (2011) 280-289.

Downloads

Published

16.07.2021 — Updated on 04.05.2022

Issue

Section

Articles

How to Cite

IMPACT OF AIR TEMPERATURE ON DRYING CHARACTERISTICS AND SOME BIOACTIVE PROPERTIES OF KIWI FRUIT SLICES: Scientific paper. (2022). Chemical Industry & Chemical Engineering Quarterly, 28(2), 151-159. https://doi.org/10.2298/CICEQ210126026T

Similar Articles

11-20 of 47

You may also start an advanced similarity search for this article.