NEW METHOD BASED ON NEURO-FUZZY SYSTEM AND PSO ALGORITHM FOR ESTIMATING PHASE EQUILIBRIA PROPERTIES
Scientific paper
DOI:
https://doi.org/10.2298/CICEQ201104024AKeywords:
Modeling, ANFIS, Artificial neural networks, Critical properties, Particle swarm optimizationAbstract
The subject of this work is to propose a new method based on the ANFIS system and PSO algorithm to conceive a model for estimating the solubility of solid drugs in supercritical CO2 (sc-CO2). The high nonlinear process was modeled by the neuro-fuzzy approach (NFS). The PSO algorithm was used for two purposes: replacing the standard backpropagation in training the NFS and optimizing the process. The validation strategy has been carried out using a linear regression analysis of the predicted versus experimental outputs. The ANFIS approach is compared to the ANN in terms of accuracy. Statistical analysis of the predictability of the optimized model trained with a PSO algorithm (ANFIS-PSO) shows a better agreement with the reference data than the ANN method. Furthermore, the comparison in terms of the AARD deviation (%) between the predicted results, the results predicted by the density-based models, and a set of equations of state demonstrates that the ANFIS-PSO model correlates far better with the solubility of the solid drugs in scCO2. A control strategy was also developed for the first time in the field of phase equilibrium by using the neuro-fuzzy inverse approach (ANFISi) to estimate pure component properties from the solubility data without passing through the GCM methods.
References
J.C. Rojas-Thomas, M. Mora, S. Santos, Neural Comput. Appl.31 (2019) 2311–2327.
S.K. Ashan, M.A. Behnajady, N. Ziaeifar, Neural Comput. Appl. 29 (2018) 969–979.
M. Khayet, C. Cojocaru, Desalination 308 (2013) 102–110.
B. Gülçin, G. Sezin, Energy 123 (2017) 149-163.
M. Laidi, S. Hanini, Rezrazi A, M.R. Yaiche, A. Abdallah el Hadj, F. Chellali, Theor. Appl. Climatol. 128 (2017) 439-451.
A. Abdallah El Hadj, C. Si-Moussa, S. Hanini, M. Laidi, Chem. Ind. Chem. Eng. Q. 19 (2013) 449-460.
M. Velibor, Chem. Ind. Chem. Eng. Q. 26 (2020)309−319.
Y. Jewajinda, P. Chongstitvatana, Neural Comput. Appl. 22 (2013)1609–1626.
R. Fuller, H.J. Zimmermann, in Proceedings of 2nd International Workshop on Current Issues in Fuzzy Technologies, University of Trento, Trento, May 28-30 (1993) 45-54.
A. Abdallah El Hadj, M. Laidi, C. Simoussa, S. Hanini, Neural Comput Appl. 28 (2017) 87–99.
J.W. Chen, F.N. Tsai, Fluid Phase. Equilib. 107 (1995) 189–200.
F.E. Wubbolts, O.S.L. Bruinsma, G.M. Van Rosmalen, J. Supercrit. Fluids 32 (2004) 79–87.
M. Shammsipur, F. Reza, Y. Yamini, A.R. Ghiasvand, J. Supercrit. Fluids 23 (2002) 225–231.
S. David, L.A. Estévez, J.C. Pulido, J.E. Garcia, M. Carmen, J. Chem. Eng. Data 50 (2005) 1234–1241.
M.D. Gordillo, M.A. Blanco, A. Molero, E. Martinez de la Ossa, J. Supercrit. Fluids 15 (1999) 183–190.
J.S.R. Jang, IEEE Trans. Syst. Man. Cybern. 23 (1993) 665–685.
A.R. Fallahpour, A.R. Moghassem, J. Eng. Fibers Fabr. 8 (2013) 6–18.
R. Kamali, A.R. Binesh, Microfluid. Nanofluid. 14 (2013) 575–581.
R.Babuska, Neuro-Fuzzy Methods for Modeling, In Recent Advances in Intelligent Paradigms and Applications, A. Abraham, L.C. Jain, J. Kacprzyk, Springer-Verlag, Heidelberg (2002), pp 161-186.
P. Coimbra, C.M. Duarte, H.C. de Sousa, Fluid Phase Equilib. 239 (2006) 188-199.
O. Pfohl, S. Petkov, G. Brunner, High-pressure fluid-phase equilibria containing supercritical fluids, In 8th International Conference on properties and Phase Equilibria for Product and Process Design, Noordwijkerhout, Netherlands, April 26-May (1998).
Y. Nannoolal, J. Rarey, D. Ramjugernath, Fluid Phase Equilib. 269 (2008) 117-133.
J. Marrero, R. Gani, Fluid Phase Equilib. (183-184) (2001) 183-208.
G.D. Garson, Interpreting Neural Network Connections weights, Al Expert: Miller Freeman, Inc. San Francisco (1991), p. 46.
G. Sodeifian, S.A. Sajadian, F. Razmimanesh, Fluid Phase Equilib. 25 (2017) 149-159.
P.C. Larissa, M.C. Acosta, C. Turner, J. Supercrit. Fluids 130 (2017) 381-388.
K. Tamura, R.S. Alwi, Dyes Pigm. 113 (2015) 351–356.
R.S. Alwi, T. Tanaka, K. Tamura, J. Chem. Thermodyn. 74 (2014) 119–125.
P. Coimbra, M.H. Gil, C.M.M. Duarte, B.M Heron, H.C. de Sousa, Fluid Phase Equilib. 238 (2005) 120–128.
A. Mehdi, M. Mehrdad, Z. Fatemeh, Chin. J. Chem. Eng. 22 (2014) 549–558.
G.R. Bitencourt, F.A. Cabral, A. Meirelles, J. Chem. Thermodyn. 103 (2016) 285–291.
C. Chun-Ta, L. Chen-An, T. Muoi, Y.P. Chen, J. CO2 Util. 18 (2017) 173–180.
Y. Khayyat, S.M. Kashkouli, F. Esmaeilzadeh, Fluid Phase Equilib. 399 (2015) 98–104.
M. Ota, M. Sato, Y. Sato, L.S.J. Richard, H. Inomata, J. Supercrit. Fluids 128 (2017) 166–172.
J.P. Paulaa, I.M.O. Sousab, M. Foglioc, F. Cabral, J. Supercrit. Fluids 112 (2016) 89–94.
A.G. Reveco-Chilla, A.L. Cabrera, J.C. de la Fuente, F.C. Zacconi, J.M. del Valle, L.M. Valenzuela, Fluid Phase Equilib.42 (2016) 84-92.
G. Sodeifian, S. Sajadian, N.S. Ardestani, J. Supercrit. Fluids128 (2017) 102-111.
F.C. Zacconi, O.N. Nuñez, A.L. Cabrera, L.M. Valenzuela, J.M. del Valle, J.C. de la Fuente, J. Chem. Thermodyn. 103 (2016) 325-332.
E. Potrich, F.A.P. Voll, V.F. Cabral, L. Cardozo Filho, Chem. Ind. Chem. Eng. Q. 25 (2019) 153−162.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Abdallah Abdallah El Hadj, Maamar Laidi , Salah Hanini
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.