OXIDATION OF CYCLOALKENE USING SUPPORTED RUTHENIUM CATALYSTS UNDER SOLVENT-FREE CONDITIONS Scientific paper

Main Article Content

Raiedhah Abdullah Alsaiari
https://orcid.org/0000-0002-0735-3162

Abstract

The present paper employs supported ruthenium nanoparticles alongside cat­alytic quantities of the radical initiator, which are proven to be capable of cyclo­octene oxidation with green conditions, in the absence of solvent, with air as the main oxidant and without sacrificial reductant. The paper examines the effects of a range of radical initiators and how the products are distributed over time. Furthermore, the paper addresses the reaction pathways to the epoxides and allylic alcohol, the latter being the primary by-product, whilst also ana­lysing the impact of the technique of synthesis, reaction time, and various sup­ports. Catalyst activity can be markedly improved by adopting a sol-immobil­i­sation technique to synthesise the catalysts, with retention of selectivity to the epoxide.

Article Details

How to Cite
Alsaiari, R. A. (2022). OXIDATION OF CYCLOALKENE USING SUPPORTED RUTHENIUM CATALYSTS UNDER SOLVENT-FREE CONDITIONS: Scientific paper. Chemical Industry & Chemical Engineering Quarterly, 28(1), 85–93. https://doi.org/10.2298/CICEQ210304020A
Section
Articles

References

J.H. Clark, D.J. Macquarrie, Org. Process Res. Dev. 1 (1997) 149–162

A.K. Suresh, M.M. Sharma, T. Sridhar, Ind. Eng. Chem. Res. 39 (2000) 3958–3997

D. Swern, Chem. Rev. 45 (1949) 1–68

T. Katsuki, K.B. Sharpless, J. Am. Chem. Soc. 102 (1980) 5974–5976

G.A. Barf, R.A. Sheldon, J. Mol. Catal., A 102 (1995) 23–39

D. Banerjee, R.V. Jagadeesh, K. Junge, M.-M. Pohl, J. Radnik, A. Brückner, M. Beller, Angew. Chem. Int. Ed. 53 (2014) 4359–4363

M.D. Hughes, Y.-J. Xu, P. Jenkins, P. McMorn, P. Landon, D.I. Enache, A.F. Carley, G.A. Attard, G.J. Hutchings, F. King, E.H. Stitt, P. Johnston, K. Griffin, C.J. Kiely, Nature 437 (2005) 1132–1135

U.N. Gupta, N.F. Dummer, S. Pattisson, R.L. Jenkins, D.W. Knight, D. Bethell, G.J. Hutchings, Catal. Lett. 145 (2015) 689–696

K. Weissermel, H.-J. Arpe, Industrial Organic Chemistry, 4th ed., Wiley VCH, Weinheim, 2003

R.M. Lambert, F.J. Williams, R.L. Cropley, A. Palermo, J. Mol. Catal., A 228 (2005) 27–33

L. Chun-Jing, Y. Wing-Yiu, L. Shou-Gui, C. Chi-Ming, J. Org. Chem. 63 (1998) 7364-7369

Z. Jun-Long, C. Chi-Ming, Org. Lett. 4 (2002) 1911-1914

A. Dali, I. Rekkab-Hammoumraoui, A. Choukchou-Braham, R. Bachir, RSC Adv. 5 (2015) 29167-29178

R. Alsaiari, Asian J. Chem. 32 (2020) 771-775

P. Gallezot, Catal. Today 37 (1997) 405-418

R.V. Engel, R. Alsaiari, E. Nowicka, S. Pattisson, P.J. Miedziak, S.A. Kondrat, D.J. Morgan, G.J. Hutchings, Top. Catal. 61 (2018) 509-518

M. Bowker, The Basic and Application of Heterogeneous Catalysis, Oxford chemistry primers, Oxford, 1998, p. 29

E.E. Stangland, K.B. Stavens, R.P. Andres, W.N. Del-gass, J. Catal. 191 (2000) 332-347

C. Sivadinarayana, T.V. Choudhary, L.L. Daemen, J. Eckert, D.W. Goodman, J. Am. Chem. Soc. 126 (2004) 11778-11779.