OPTIMIZATION OF MEGAKARYOCYTE TRAPPING FOR PLATELET FORMATION IN MICROCHANNELS

Scientific paper

Authors

  • Gunay Baydar-Atak 1 Yildiz Technical University, Department of Chemical Engineering, Esenler, İstanbul, Turkey
  • Mert Akin Insel Yildiz Technical University, Department of Chemical Engineering, Esenler, İstanbul, Turkey
  • Muhammed Enes Oruc Gebze Technical University, Department of Chemical Engineering, Gebze, Kocaeli, Turkey
  • Hasan Sadikoglu ildiz Technical University, Department of Chemical Engineering, Esenler, İstanbul, Turkey

DOI:

https://doi.org/10.2298/CICEQ201224012B

Keywords:

microfluidics, biotechnology, mathematical modeling, platelet, COMSOL Multiphysics

Abstract

Platelets (PLTs) are responsible for stopping bleeding. They are small cell fragments produced from megakaryocytes (MKs) in the bone marrow. Low platelet count is a significant health problem for a patient. PLTs can usually be stored for up to 5 days prior to transfusion. Instantaneous production of PLTs from isolated and stored MKs is crucial for the patient’s health. Thanks to microfluidic platforms, PLTs can be produced instantaneously from MKs. Herein, we have computationally studied fluid dynamics in the microchannels with slit structures and different inlet geometries. Analysis of the flow dynamics was performed by the commercial analysis software. The effects of flow rates and the angle between the inlet channels on the MKs trapping were inves­tigated. The optimization of the angle between inlet channels and flow rates of main and pressure flows was done with response surface methodology (RSM) by counting the trapped MKs. The optimum conditions lead to the percentage of trapped MKs being 100 with a relative deviation of <1%. We also concluded that flow rates to trapping a higher amount of MKs are as important as the angle between the inlet channels.

References

.N. Thon, L. Mazutis, S. Wu, J.L. Sylman, A. Ehrlicher, K.R. Machlus, Q. Feng, S. Lu, R. Lanza, K.B. Neeves, D.A. Weitz, J.E. Italiano Jr., Blood 124 (2014) 1857–1867

K.R. Machlus, J.E. Italiano, J. Cell Biol. 201 (2013) 785–796

Y. Nakagawa, S. Nakamura, M. Nakajima, H. Endo, T. Dohda, N. Takayama, H. Nakauchi, F. Arai, T. Fukuda, K. Eto, Exp. Hematol. 41 (2013) 742–748

T. Matsunaga, I. Tanaka, M. Kobune, Y. Kawano, M. Tanaka, K. Kuribayashi, S. Iyama, T. Sato, Y. Sato, R. Takimoto, T. Takayama, J. Kato, T. Ninomiya, H. Ham-ada, Y. Niitsu, Stem Cells 24 (2006) 2877–2887

A.C. Schlinker, K. Radwanski, C. Wegener, K. Min, W.M. Miller, Biotechnol. Bioeng. 112 (2015) 788–800

Y. Ito, S. Nakamura, N. Sugimoto, T. Shigemori, Y. Kato, M. Ohno, S. Sakuma, K. Ito, H. Kumon, H. Hirose, H. Okamoto, M. Nogawa, M. Iwasaki, S. Kihara, K. Fujio, T. Matsumoto, N. Higashi, K. Hashimoto, A. Sawaguchi, K. Harimoto, M. Nakagawa, T. Yamamoto, M. Handa, N. Watanabe, E. Nishi, F. Arai, S. Nishimura, K. Eto, Cell 174 (2018) 636-648

T.J. Cobain, E.C. Vamvakas, A. Wells, K. Titlestad, Transfus. Med. 17 (2007) 1–15

M.T. Sullivan, R. Cotten, E.J. Read, E.L. Wallace, Transfusion 47 (2007) 385–394

G. Ingavle, N. Shabrani, A. Vaidya, V. Kale, Acta Biomater. 96 (2019) 99–110

J.N. Thon, J.E. Italiano, Semin. Hematol. 47 (2010) 220–226

I. Pallotta, M. Lovett, D.L. Kaplan, A. Balduini, Tissue Eng., C 17 (2011) 1223–1232

Q. Feng, N. Shabrani, J.N. Thon, H. Huo, A. Thiel, K.R. Machlus, K. Kim, J. Brooks, F. Li, C. Luo, E.A. Kimbrel, J. Wang, K. Kim, J. Italiano, J. Cho, S. Lu, R. Lanza, Stem Cell Reports 3 (2014) 817–831

C.A. Di Buduo, L.S. Wray, L. Tozzi, A. Malara, Y. Chen, C.E. Ghezzi, D. Smoot, C. Sfara, A. Antonelli, E. Spedden, G. Bruni, C. Staii, L. De Marco, M. Magnani, D. L. Kaplan, A. Balduini, Blood 125 (2015) 2254–2264

J.N. Thon, B.J. Dykstra, L.M. Beaulieu, Platelets 28 (2017) 472–477

B. Sullenbarger, J. Hwan Bahng, R. Gruner, N. Kotov, L.C. Lasky, Exp. Hematol. 37 (2009) 101–110

C. Dunois-Lardé, C. Capron, S. Fichelson, T. Bauer, E. Cramer-Bordé, D. Baruch, Blood 114 (2009) 1875–1883

A. Blin, A. Le Goff, A. Magniez, S. Poirault-Chassac, B. Teste, G. Sicot, K.A. Nguyen, F.S. Hamdi, M. Reyssat, D. Baruch, Sci. Rep. 6 (2016) 1–8

W.B. Mitchell, M.P. Avanzi, New York Blood Center, Inc, assignes. United States Patent US 9,574,178. Feb 21 (2017)

M.P. Avanzi, W.B. Mitchell, Br. J. Haematol. 165 (2014) 237–247

A.F. Martinez, R.D. McMahon, M. Horner, W.M. Miller, Biotechnol. Prog. 33 (2017) 1614–1629

S.M. Hastings, M.T. Griffin, D.N. Ku, Platelets 28 (2017) 427–433

P.J.A. Kenis, R.F. Ismagilov, G.M. Whitesides, Science 285 (1999) 83-85

S.M. Rahman, V. Hlady, Lab Chip 21 (2021) 174-183

O. Ulkir, O. Girit, I. Ertugrul, J. Nanometer. 2021 (2021) 1-10

I. Ertugrul, O. Ulkir, RSC Adv. 10 (2020) 33731-33728

Multiphysics C.: CFD Module User ’s Guide. COMSOL Multiphysics (2016)

G. Baydar Atak, E. Bayraktar, U. Mehmetoglu, Green Process. Synth. 8 (2019) 525-532

E. Bayraktar, Process Biochem. 37 (2001) 169–175

G. Ye, L. Ma, L. Li, J. Liu, S. Yuan, G. Huang, Int. J. Coal Prep. Util. 40 (2017) 1–15

M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Talanta 76 (2008) 965–977

G. Boffetta, R.E. Ecke, Annu. Rev. Fluid Mech. 44 (2012) 427-451

Y. Zhang, X. Chen, J. Braz. Soc. 89 (2020) 1-11

Y. Zhang, X. Chen, J. Braz. Soc. 206 (2020) 1-11

Z.B. Sendekia, P. Bacchin, Langmuir 32 (2016) 1478-1488.

Published

07.05.2021 — Updated on 20.03.2022

Issue

Section

Articles

How to Cite

OPTIMIZATION OF MEGAKARYOCYTE TRAPPING FOR PLATELET FORMATION IN MICROCHANNELS: Scientific paper. (2022). Chemical Industry & Chemical Engineering Quarterly, 28(1), 19-28. https://doi.org/10.2298/CICEQ201224012B

Similar Articles

21-28 of 28

You may also start an advanced similarity search for this article.