EFFECTS OF SOFT WATER ATTACK ON PORTLAND AND NATURAL ZEOLITE BLENDED CEMENTS

Scientific paper

Authors

  • TIANA MILOVIĆ Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
  • OGNJEN RUDIĆ Institute of Technology and Testing of Building Materials (IMBT-TVFA), Graz University of Technology, Graz, Austria
  • SAEEDA OMRAN FURGAN Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
  • MIROSLAVA RADEKA Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
  • MIRJANA MALEŠEV Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
  • VLASTIMIR RADONJANIN Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
  • SEBASTIAN BALOŠ Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
  • MIRJANA LABAN Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia

DOI:

https://doi.org/10.2298/CICEQ201120009M

Keywords:

Ca-clinoptilolite, compressive strength, deionised water, FTIR spectroscopy, leaching, XRD analysis

Abstract

The durability of concrete infrastructure is related to the properties of the applied concrete and the effects of the aggressive external environment on it. When concrete is directly exposed to soft water, the leaching of calcium ions from hardened cement or cement-based pastes occurs, causing reduction in strength and further deterioration of the concrete structure. This paper pre­sents the experimental results of soft water attack effects on phase com­po­sition and compressive strength of blended cement pastes, when cement is replaced with 0, 10, 20 and 30% of natural zeolite. In order to simulate soft water attack in laboratory conditions, paste specimens were exposed to leach­ing in deionised water up to 180 days. The evaluation of the changes in phase composition (ettringite, portlandite, calcium silicate hydrate gel) due to calcium ion leaching was made based on X-ray diffraction analysis, Fourier-transform infrared spectroscopy and paste compressive strength tests. The presence of portlandite and ettringite after 180 days of exposure to deionised water indi­cates that leaching did not influence the stability of the hydration products in blended cement pastes. Moreover, blended cement paste with 10% of natural zeolite had a higher compressive strength than the reference one.

References

M. Najimi, J. Sobhani, B. Ahmadi, M. Shekarchi, Constr. Build. Mater. 35 (2012) 1023-1033

M.C.G. Juenger, R. Snellings, S.A. Bernal, Cem. Concr. Res. 122 (2019) 257-273

G. Mertens, R. Snellings, K.V. Balen, B. Bicer-Simsir, P. Verlooy, J. Elsen, Cem. Concr. Res. 39 (2009) 233-240

V.D. Kasić, V. Simić, D. Životić, A.S. Radosavljević-Mihajlović, J.N. Stojanović, Hem.Ind. 71 (2017) 49-60

B. Ahmadi, M. Shekarchi, Cem. Concr. Compos. 32 (2010) 134-141

J. Małolepszya, E. Grabowska, Procedia Eng. 108 (2015) 170-176

C. Bilim, Constr. Build. Mater. 25 (2011) 3175-3180

P. Krolo, R. Krstulović, P. Dabić, A. Bubić, Ceram.-Silik. 49 (2005) 213-219

M. Vyšvaril, P. Bayer, Procedia Eng. 151 (2016) 162-169

C. Napia, T. Sinsiri, C. Jaturapitakkul, P. Chindaprasirt, Waste Manage. 32 (2012) 1459-1467

I. Plecas, S. Dimovic, I. Smiciklas, Prog. Nucl. Energy 48 (2006) 495-503

M. Otieno, M. Alexander, J. du Plessis, J. S. Afr. Inst. Civ. Eng. 59 (2017) 57-67

B. Anand, S.N. Sharma, in Recent Advancements in Mineral and Water Resources, R.N. Tiwari Ed., Excellent Publishers, New Delhi, 2016, p. 155

G. Vu, T. Iskhakov, J.J. Timothy, C. Schulte-Schrepping, R. Breitenbücher, G. Meschke, Materials 13 (2020) 1-17

N. Marinoni, A. Pavese, M. Voltolini, M. Merlini, Cem. Concr. Compos. 30 (2008) 700-705

P. Faucon, P. Le Bescop, F. Adenot, P. Bonville, J.F. Jacquinot, F. Pineau, B. Felix, Cem. Concr. Res. 26 (1996) 1707-1715

G. Kirov, L. Filizova, Geokhim. Mineral. Petrol. 49 (2012) 65-82

B. Lothenbach, K. Scrivener, R.D. Hooton, Constr. Build. Mater. 41 (2011) 1244-1256

J. Skibsted, R. Snellings, Cem. Concr. Res. 124 (2019), Paper 105799

D. Caputo, B. Liguori, C. Colella, Cem. Concr. Compos. 30 (2008) 455-462

R. Snellings, G. Mertens, J. Elsen, J. Therm. Anal. Calorim. 101 (2010) 97-105

K.C. Newlands, D.E. Macphee, Adv. Appl. Ceram. 116 (2017) 216-224

K.C. Newlands, M. Foss, T. Matchei, J. Skibsted, D.E. Macphee, J. Am. Ceram. Soc. 100 (2017) 1941-1955

K. Luke, in Proceedins of 12th International Congress on the Chemistry of Cement, Montreal, Canada, 2007

K.V. Ragnarsdόttir, Geochim. Cosmochim. Acta 57 (1993) 2439-2449

C. Alonso, M. Castellote, I. Llorente, C. Andrade, Cem. Concr. Res. 36 (2006) 1583-1594

W. Kunther, S. Ferreiro, J Skibsted, J. Mater. Chem., A 5 (2017) 17401-17412

P. Feng, C. Miao, J.W. Bullard, Cement Concrete Comp. 49 (2014) 9-19

J. Duchesne, A. Bertron, in Performance of Cement-Based Materials in Aggressive Aqueous Environments, State-of-the-Art Report, M. Alexander, A. Bertron, N. De Belie Eds., RILEM TC 211-PAE, 2013, pp. 91-112

D. Vaičiukynienė, A. Kantautas, G. Krušinskas, A. Kielė, Ž. Rudžionis, Chem. Ind. Chem. Eng. Q. 22 (2016) 285-292

J.K. Norvell, J.G. Stewart, M.C.G. Juenger, D.W. Fowler, J. Mater. Civ. Eng. 19 (2007) 1053-1059

BS EN 197-1, Cement, Composition, specifications and conformity criteria for common cements, 2011

BS EN 1097-7, Tests for mechanical and physical properties of aggregates, Part 7: Determination of the particle density of filler – Pycnometer method, 2008

BS EN 196-6, Methods of testing cement, Part 6: Determination of fineness, 2010

BS EN 451-2, Method of testing fly ash, Part 2: Determination of fineness by wet sieving, 1995

BS EN 196-3, Methods of testing cement, Part 3: Determination of setting times and soundness, 2005

BS EN 450-1, Fly ash for concrete, Part 1: Definition, specifications and conformity criteria, 2012

F.A. Sabet, N.A. Libre, M. Shekarchi, Constr. Build. Mater. 44 (2013) 175-184

BS EN 196-2, Methods of testing cement, Chemical analysis of cement, 2013

I.E. Odom, Phil. Trans. R. Soc. Lond. A 311 (1984) 391-409

M. Horgnies, J.J. Chen, C. Bouillon, in Proceedings of 6th International Conference on Computational Methods and Experiments in Materials Characterisation, Siena, Italy, 2013, p.251

G. Rodriguez-Fuentes, A.R Ruiz-Salvador, M .Mir, O. Picazo, G. Quintana, Microporous Mesoporous Mater. 20 (1998) 269-281

K. Sobol, T. Markiv, V. Terlyha, W. Franus, Pecularities, Bud-arch 14 (2015) 105-113

F. Puertas, S. Goñi, M.S. Hernández, C. Varga, A. Guerrero, Cem. Concr. Compos. 34 (2012) 384-391

V. Bulatović, M. Melešev, M. Radeka, V. Radonjanin, I. Lukić, Constr. Build. Mater. 152 (2017) 614-631

P. Yu, R.J. Kirkpatrick, B. Poe, P.F. McMillan, X. Cong, J. Am. Ceram. Soc. 82 (1999) 742-748

Y. Kocak, E. Tascı, U. Kaya, Constr. Build. Mater. 47 (2013) 720-727

S. Özen, M.C. Göncüoglu, B. Liguori, B. de Gennaro, P. Cappelletti, G.D. Gatta, F. Iucolano, C. Colella, Constr. Build. Mater. 105 (2016) 46-61

M.Y.A. Mollah, W. Yu, R. Schennach, D. L. Cocke, Cem. Concr. Res. 30 (2000) 267-273

F.H. Heukamp, F.-J. Ulm, J.T. Germaine, Cem. Concr. Res. 33 (2003) 1155-1173

A. Neville, Concrete: Nevilleʹs Insights and Issues, Thomas Telford Publishing, London, 2006, 75-78

L.D. Bish, Clays Clay Miner. 32 (1984) 444-452.

Published

05.01.2022

Issue

Section

Articles

How to Cite

EFFECTS OF SOFT WATER ATTACK ON PORTLAND AND NATURAL ZEOLITE BLENDED CEMENTS: Scientific paper. (2022). Chemical Industry & Chemical Engineering Quarterly, 27(4), 403-415. https://doi.org/10.2298/CICEQ201120009M

Similar Articles

51-60 of 120

You may also start an advanced similarity search for this article.