COMPARISON OF CORROSION BEHAVIOR OF COPPER AND COPPER ALLOYS IN AQUEOUS CHLORIDE SOLUTION

Scientific paper

Authors

  • SENKA GUDIĆ University of Split, Faculty of Chemistry and Technology, Department of Electrochemistry and Materials Protection, Split, Croatia
  • LADISLAV VRSALOVIĆ University of Split, Faculty of Chemistry and Technology, Department of Electrochemistry and Materials Protection, Split, Croatia
  • ANA RADELJIĆ University of Split, Faculty of Chemistry and Technology, Department of Electrochemistry and Materials Protection, Split, Croatia
  • EMEKA EMANUEL OGUZIE Federal University of Technology Owerri, Africa Centre of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Owerri, Nigeria
  • IVANA IVANIĆ University of Zagreb, Faculty of Metallurgy, Sisak, Croatia
  • STJEPAN KOŽUH University of Zagreb, Faculty of Metallurgy, Sisak, Croatia
  • MIRKO GOJIĆ University of Zagreb, Faculty of Metallurgy, Sisak, Croatia

DOI:

https://doi.org/10.2298/CICEQ200701007G

Keywords:

copper alloys, corrosion, electrochemical methods, polarization, shape memory alloys, SEM/EDS

Abstract

A comparative corrosion study of Cu and Cu-Al, Cu-Al-Ni, Cu-Al-Mn and
Cu-Al-Mn-Ni in 0.5 mol dm-3 NaCl solution was performed using an open circuit potential, potentiodynamic polarization and electrochemical impedance spec­tro­scopy measurements (EIS). Scanning electron microscopy/energy-disper­sive X-ray spectroscopy (SEM/EDS) analysis was used to evaluate corrosive damage on the sample surface after polarization measurements. The reported results suggest that the alloying elements have reduced cathodic and anodic current densities in the Tafel region, increased anodic currents at higher anodic potentials, and slightly displaced corrosion potential towards more posi­tive values. Overall, impedance increased in the following order: Cu < Cu-Al < Cu-Al-Ni < Cu-Al-Mn < Cu-Al-Mn-Ni. This indicates that Cu alloys possess better corrosion resistance. SEM and EDS analysis after polarization measure­ments showed uniform dissolution of pure Cu, as well as the presence of a surface oxide layer, consisting of a mixture of the corresponding alloying ele­ments, on all investigated alloys. Aggressive anodic polarization severely dam­aged the barrier layers on the Cu alloy specimens.

References

R. Grecu, A. Samide, G. Eugenia Iacobescu, N. Cioatera, A. Popescu, Chem. Ind. Chem. Eng. Q. 25 (2019) 267-275

V. Grudić, I. Bošković, A. Gezović, Chem. Biochem. Eng. Q. 32 (2018) 299–305

N.D. Nikolić, P.M. Živković, M.G. Pavlović, Z. Baščarević, J. Serb. Chem. Soc. 84 (2019) 1209-1220

J.R. Davis in: Alloying understanding the basics, ASM International, Materials Park, OH, 2004

L. Vrsalović, E. Oguzie, M. Kliškić, S. Gudić, Chem. Eng. Comm. 198 (2011) 1380–1393

R.C.N. Liberto, R. Magnabosco, N. Alonso-Falleiros, Corrosion 63 (2007) 211-219

M.A. Shaik, K.H. Syed, B.R. Golla, Corros. Sci. 153 (2019) 249-257

S. Sathish, U.S. Mallik, T.N. Raju, J. Miner. Mater. Char. Eng. 2 (2014) 71-77

M. Sreekumar, T. Nagarajan Singaperumal, Ind. Robot 34 (2007) 285-294

R. Dasgupta, J. Mater. Res. 29 (2014) 1681-1698

L. Mikova, S. Medvecka-Benova, M. Kelemen, F. Tre-buna, I. Virgala, Metalurgija 54 (2015) 169-172

L. Vrsalović, I. Ivanić, S. Kožuh, B. Kosec, M. Bizjak, J. Kovač, U. Gabor and M. Gojić, Corros. Rev. 37 (2019) 579–589

S.N.S. Al-Humairi, Cu-Based shape memory alloys: modified structures and their related properties, Intech open books, 2019, DOI: 10.5772/intechopen.86193

C. Deslouis, B. Tribollet, G. Mengoli, M.M. Musiani, J. Appl. Electrochem. 18 (1988) 374-383

G. Kear, B.D. Barker, F.F. Walsh, Corros. Sci. 46 (2004) 109-135

Y. Van Ingelgem, A. Hubin, J. Vereecken, Electrochim. Acta 52 (2007) 7642-7650

M.M. Antonijević, S.M. Milić, M. B. Petrović, Corros. Sci. 51 (2009) 1228-1237

A.M. Alfantazi, T.M. Ahmed, D. Tromans, Mater. Des. 30 (2009) 2425-2430

H.P. Lee, K. Nobe, J. Electrochem. Soc. 133 (1986) 2035-2043

K.F. Khaled, Mat. Chem. Phys. 125 (2011) 427-433

S.N. Saud, E. Hamzah, T. Abubakar, H. R. Bakhsheshi-

-Rad, Trans. Nonferrous Met. Soc. China 25 (2015) 1158-1170

M. Gojić, L. Vrsalović, S. Kožuh, A. Kneissl, I. Anžel, S. Gudić, B. Kosec, M. Kliškić, J. Alloys Compd. 509 (2011) 9782-9790

R.G. Blundy, M.J. Pryor, Corros. Sci. 12 (1972) 65-75

H. Shih, H. W. Pickering, J. Electrochem. Soc. 134 (1987) 1949-1957

S. Petetin, J. Crousier, J.P. Crousier, Mater. Chem. Phys. 10 (1984) 317-329

I. Milošev, M. Metikoš Huković, Electrochim. Acta 42 (1997) 1537-1548

I. Milošev, M. Metikoš-Huković, J. Appl. Electrochem. 29 (1999) 393-402

A. Schussler, H.E. Exner, Corros. Sci. 34 (1993) 1803-1811

W.A. Badawy, R.M. El-Sherif, H. Shehata, Electrochim. Acta 54 (2009) 4501-4505

H. Nady, N.H Helal, M.M. Rabiee, WA. Badawy, Mater. Chem. Phys. 134 (2012) 945-950

W. Badawy, M. El-Rabiee, N. Helal, H. Nady, Electro-chim. Acta 56 (2010) 913-918

A.O. Moghaddam, M. Ketabchi, R. Bahrami, Trans. Nonferrous Met. Soc. China 23 (2013) 2896−2904

H.H. Kuo, W.H. Wang, Y.F. Hsu, C.A. Huang, Corros. Sci. 48 (2006) 4352-4364

G. Kear, F.C. Walsh, D.B. Barker, K.S. Stokes, EuroCorr 2000, Institute of Corrosion, Leighton Buzzard, 2000

B.A. Boukamp Equivalent Circuit, University of Twente, Twente, 1989

L. Vrsalović, S Gudić, D. Gracić, I. Smoljko, I. Ivanić, M. Kliškić, E. E. Oguzie, Int. J. Electrochem. Sci. 13 (2018) 2102 – 2117

S.N. Saud, E. Hamzah, T. Abubakar, H.R. Bakhsheshi-Rad, Mater. Corr. 66 (2015) 527-534

A.V. Benedetti, P.T.A. Sumodjo, K. Nobe, P.L. Cabot, W. Proud, Electrochim. Acta 40 (1995) 2657-2668

H. Sun, J.E. Orth, H.G. Wheat, JOM 45 (1993) 36-41

M.M. Antonijević, S.C. Alagić, M.B. Petrović, M.B. Radovanović, A.T. Stamenković, Int. J. Electrochem. Sci. 4 (2009) 516-524

A. El Warraky, H.A. El Shayeb, E.M. Sherif, Anti-Corros. Methods 435 Mater. 51 (2004) 52-61

G.C. Serra, A.V. Benedetti, R.D. Noce, J. Braz. Chem. Soc. 8 (2010) 1530-1536

Y.G. Chun, S.I. Pyun, H.C. Kim, Mat. Lett. 20 (1994) 265-270

M. Stern, A.L. Geary. J. Electrochem. Soc. 104 (1957) 56-63

G. Cicileo, B. Rosales, F. Varela, J. Vilche, Corros. Sci. 41 (1999) 1359-1375

D. Zhang, L. Gao, G. Zhou, Appl. Surf. Sci. 225 (2004) 287-293

A. Srivastava, R. Balasubramaniam, Mater. Corros. 56 (2005) 611-618

W.A. Badawy, K.M. Ismail, A.M. Fathi, Electrochim. Acta 50 (2005) 3603-3608

E. Sherif, S.M. Park, Electrochim. Acta 51 (2006) 4665-4673

I.D. Raistrick, J.R. Macdonald, D.R. Franceschetti. in Impedance Spectroscopy, J.R. Macdonald (Ed.), J. Wiley & Sons, New York, 1987

W.A. Badawy, F.M. Al-Kharafi, A.S. El-Azab, Corros. Sci. 41 (1999) 709-727

J.A. Wharton, R.C. Barik, G. Kear, R.J.K. Wood, K.R. Stokes, F.C. Walsh, Corros. Sci. 47 (2005) 3336-3367.

[53] L. Vrsalović, I. Ivanić, S. Kožuh, S. Gudić, B. Kosec, M. Gojić, Trans Nonferrous Met. Soc. China 28 (2018) 1149-1156

D.D. Macdonald, M. Urquidi, J. Electrochem. Soc. 132 (1985) 555-558

D.D. Macdonald, J. Electrochem. Soc. 139 (1992) 3434-3449

H. Nady, M.M. El-Rabiei, M. Samy, W.A. Badawy, J. Bio- Tribo-Corros. 6 (2020) 22

G.N. Sure, L.C. Brown, Metall. Mater. Trans., A 15 (1984) 1613-1621

V. Sampath, Smart Mater. Struct. 14 (2005) S253-S261.

Published

05.01.2022

Issue

Section

Articles

How to Cite

COMPARISON OF CORROSION BEHAVIOR OF COPPER AND COPPER ALLOYS IN AQUEOUS CHLORIDE SOLUTION: Scientific paper. (2022). Chemical Industry & Chemical Engineering Quarterly, 27(4), 383-394. https://doi.org/10.2298/CICEQ200701007G

Similar Articles

41-49 of 49

You may also start an advanced similarity search for this article.