NEWLY SUGGESTED SHAPES OF IMPELLERS FOR STIRRING HIGHLY VISCOUS FLUIDS IN VESSELS

Scientific paper

Authors

  • HOUARI AMEUR Department of Technology, University Centre of Naama - Ahmed Salhi, Naama, Algeria
  • YOUCEF KAMLA Faculty of Technology, University Hassiba Ben Bouali of Chlef, Algeria

DOI:

https://doi.org/10.2298/CICEQ201013005A

Keywords:

close clearance impellers, stirred tanks, highly viscous fluids, modified anchor impellers, CFD

Abstract

The power consumption and flow patterns generated in a cylindrical stirred tank are determined. The anchor impeller is used to ensure the agitation of highly viscous fluids. New modifications in the impeller design are introduced to improve the stirring rates. Firstly, the lower corner of the conventional anchor is replaced by an inclined segment to obtain Case No. 1. The number of segments was then increased to reach a closed circular shape (Case No. 2). Further increase in the number of segments was introduced to reach a perfect circular blade (Case No. 3) in the vertical direction. Finally, another circular horizontal blade was added to obtain Case No. 4. From the obtained results, Case No. 4 provided a great improvement in the circulation of fluid particles inside the vessel and generated the widest well-stirred region.

References

S. Deshpande, K. Kar, J. Walker, J. Pressler, W. Su, Chem. Eng. Sci. 168 (2017) 495-506

G. Janiga, Chem. Eng. Sci. 201 (2019) 132-144

H. Ameur, Chem. Eng. Proc. Process Intensif. 154 (2020) 108009

M. Foukrach, H. Ameur, Chem. Ind. Chem. Eng. Q. 26 (2020) 259-266

H. Ameur, Energy 93 (2015) 1980-1988

P. Prajapati, F. Ein‐Mozaffari, Chem. Eng. Technol. 32 (2009) 1211-1218

H. Ameur, ChemistrySelect 2 (2017) 11492-11496

B. Triveni, B. Vishwanadham, T. Madhavi, S. Venkateshwar, Chem. Eng. Res. Des. 88 (2010) 809-818

S. Woziwodzki, L. Broniarz‐Press, M. Ochowiak, Chem. Eng. Technol. 33 (2010) 1099-1106

R.P. Chhabra, J.F. Richardson, Non-Newtonian flow in the process industries: fundamentals and engineering applications, Butterworth-Heinemann, Oxford, 1999

M. Ohta, M. Kuriyama, K. Arai, S. Saito, J. Chem. Eng. Japan 18 (1985) 81-84

S. Karray, Z. Driss, H. Kchaou, M. Abid, Eng. Appl. Comp. Fluid Mech. 5 (2011) 315-328

T. Espinosa-Solares, E.B.-D.L. Fuente, F. Thibault, P. Tanguy, Chem. Eng. Commun. 157 (1997) 65-71

B. Triveni, B. Vishwanadham, S. Venkateshwar, Heat Mass Transfer 44 (2008) 1281-1288

H. Ameur, J. Hydrodyn. 28 (2016) 669-675

H. Ameur, A. Ghenaim, ChemistrySelect 3 (2018) 7472-7477

Y. Kamla, H. Ameur, A. Karas, M.I. Arab, Chem. Pap. 74 (2020) 779-785

R. Alcamo, G. Micale, F. Grisafi, A. Brucato, M. Ciofalo, Chem. Eng. Sci. 60 (2005) 2303-2316

A. Khapre, B. Munshi, J. Taiwan Inst. Chem. Eng. 56 (2015) 16-27

A. Hadjeb, M. Bouzit, Y. Kamla, H. Ameur, Polish J. Chem. Technol. 19 (2017) 83-91

H. Ameur, Chin. J. Chem. Eng. 24 (2016) 572-580

H. Ameur, Int. J. Chem. React. Eng. 14 (2016) 1025-1033

H. Ameur, J. Food Eng. 233 (2018) 117-125

D. Anne-Archard, H. C. Boisson, M. Marouche, in Proceedings of 18ème Congrès Français de Mécanique, Grenoble, France, 2007, pp. 27-31.

Published

05.01.2022

Issue

Section

Articles

How to Cite

NEWLY SUGGESTED SHAPES OF IMPELLERS FOR STIRRING HIGHLY VISCOUS FLUIDS IN VESSELS: Scientific paper. (2022). Chemical Industry & Chemical Engineering Quarterly, 27(4), 363-369. https://doi.org/10.2298/CICEQ201013005A