PINE CONE POWDER FOR THE ADSORPTIVE REMOVAL OF COPPER IONS FROM WATER

Scientific paper

Authors

  • REDOUANE OUAFI Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Science Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Route d'immouzer, Fez, Morocco
  • ANASS OMOR Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Science Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Route d'immouzer, Fez, Morocco
  • YOUNES GAGA Laboratory of Biotechnology, Ecology and Preservation of Natural Resources, Faculty of Science, Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Route d'immouzer, Fez, Morocco
  • MOHAMED AKHAZZANE Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Science Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Route d'immouzer, Fez, Morocco
  • MUSTAPHA TALEB Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Science Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Route d'immouzer, Fez, Morocco
  • ZAKIA RAIS Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Science Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Route d'immouzer, Fez, Morocco

DOI:

https://doi.org/10.2298/CICEQ200101001O

Keywords:

copper ion removal, isotherms, kinetic, natural waste, pine cone powder, water treatment

Abstract

This research investigates the adsorption potential of pine cone powder (PCP) for the removal of copper ions (Cu(II)) from aqueous solutions. The process of adsorption was reasonably fast, completed within a time of 60 min. The pseudo-second order kinetic model describes properly the Cu(II) adsorption by PCP. The adsorbent was characterised by various instrumental techniques and batch experiments were conducted to investigate the effect of PCP dose, solution pH, particle size and initial Cu(II) concentration on adsorption effi­ciency. Optimum Cu(II) removal occurred at a slightly acidic pH, with a particle size less than 100 μm. The effective PCP dose was estimated to be 36 g L-1. The increase in the initial concentration of Cu (II) was accompanied by a red­uction in the rate of its reduction by almost half. The Langmuir model was the best fitting isotherm with a maximum adsorption capacity of 9.08 mg g-1. The thermodynamic parameters values showed that the Cu(II) adsorption was a spontaneous and endothermic process. The results of this research suggest that Cu(II) could be removed through an environmentally friendly process using PCP as low-cost natural waste.

References

M.A.A. Wijayawardena, M. Megharaj, R. Naidu, in: Adv. Agron., Elsevier Inc., 2016, pp. 175–234

M. Mahurpawar, Int. J. Reseacrh-Granthaalayah 2350 (2015) 2394–3629

R. Ouafi, Z. Rais, M. Taleb, M. Benabbou, M. Asri, in: O.K. Stefan E (Ed.), Sawdust Prop. Potential Uses Hazards, Nova Science Publishers, Incorporated, 2017, pp. 147–181

S. Babel, T.A. Kurniawan, J. Hazard. Mater. 97 (2003) 219–243

C. Palma, E. Contreras, J. Urra, M.J. Martínez, Waste Biomass Valorization 2 (2011) 77–86

M.T. Islam, R. Saenz-Arana, C. Hernandez, T. Guinto, M.A. Ahsan, D.T. Bragg, H. Wang, B. Alvarado-Tenorio, J.C. Noveron, J. Environ. Chem. Eng. 6 (2018) 3070–3082

M.T. Islam, C. Hernandez, M.A. Ahsan, A. Pardo, H. Wang, J.C. Noveron, J. Environ. Chem. Eng. 5 (2017) 5270–5279

C.K. Jain, D.S. Malik, A.K. Yadav, Environ. Process. 3 (2016) 495–523

N.S. Kumar, M. Asif, A.M. Poulose, M. Suguna, M.I. Al-Hazza, Processes 7 (2019)

A.E. Ofomaja, E.B. Naidoo, S.J. Modise, Desalination 251 (2010) 112–122

N.S. Kumar, M. Asif, M.I. Al-Hazzaa, Environ. Sci. Pollut. Res. 25 (2018) 21949–21960

G.M.A. Bouchair Abdennour, Bouremmad Farida, Shawuti Shalima, Amayreh Mousa Y, Res. J. Chem. Environ. 23 (2019) 10–18

A.I. Almendros, M.A. Martín-Lara, A. Ronda, A. Pérez, G. Blázquez, M. Calero, Bioresour. Technol. 196 (2015) 406–412

H. Ucun, Y.K. Bayhan, Y. Kaya, A. Cakici, O. Faruk Algur, Bioresour. Technol. 85 (2002) 155–158

D. Politi, D. Sidiras, Procedia Eng. 42 (2012) 1969–1982

A.E. Ofomaja, E.B. Naidoo, S.J. Modise, J. Hazard. Mater. 168 (2009) 909–917

G. Blázquez, M.A. Martín-Lara, E. Dionisio-Ruiz, G. Tenorio, M. Calero, J. Ind. Eng. Chem. 18 (2012) 1741–1750

G. Deǧirmen, M. Kiliç, Ö. Çepelioǧullar, A.E. Pütün, Water Sci. Technol. 66 (2012) 564–572

R. Ouafi, Z. Rais, M. Taleb, Desalin Water Treat. 180 (2020) 185–192

S.K. Lagergren, Sven. Vetenskapsakad. Handingarl. 24 (1898) 1–39

G. Blanchard, M. Maunaye, G. Martin, Water Res. 18 (1984) 1501–1507

W.J. Weber, J.C. Morris, J. Sanit. Eng. Div. 89 (1963) 31–60

J. Zeldowitsch, Acta Physicochim. URSS 1 (1934) 364–449

I. Langmuir, J. Am. Chem. Soc. 40 (1918) 1361–1403

H. Freundlich, Zeitschrift Phys. Chemie 57 (1906) 386–470

M.M. Dubinin, in: Dokl. Akad. Nauk SSSR, 1947, pp. 327–329

O. Redlich, D.L. Peterson, J. Phys. Chem. 63 (1959) 1024–1024

É.C. Lima, M.A. Adebayo, F.M. Machado, in: C.P. Berg-mann, F.M. Machado (Eds.), Carbon Nanomater. as Adsorbents Environ. Biol. Appl., Springer International Publishing, Cham, 2015, pp. 33–69

S.K. Bozbaş, Y. Boz, Process Saf. Environ. Prot. 103 (2016) 144–152

H.N. Tran, S.J. You, H.P. Chao, J. Environ. Chem. Eng. 4 (2016) 2671–2682

H.N. Tran, S.-J. You, A. Hosseini-Bandegharaei, H.-P. Chao, Water Res. 120 (2017) 88–116

X. Zhou, X. Zhou, Chem. Eng. Commun. 201 (2014) 1459–1467

V.S. Munagapati, V. Yarramuthi, S.K. Nadavala, S.R. Alla, K. Abburi, Chem. Eng. J. 157 (2010) 357–365

M. Petrović, T. Šoštarić, M. Stojanović, J. Petrović, M. Mihajlović, A. Ćosović, S. Stanković, Ecol. Eng. 99 (2017) 83–90

N. Ouazene, M.N. Sahmoune, Int. J. Chem. React. Eng. 8 (2010) 151

H.L. Ornaghi Júnior, Á. de G.O. Moraes, M. Poletto, A.J. Zattera, S.C. Amico, Cellul. Chem. Technol. Cellul. Chem. Technol. 50 (2016) 15–22

A.N. Kosasih, J. Febrianto, J. Sunarso, Y.H. Ju, N. Indraswati, S. Ismadji, J. Hazard. Mater. 180 (2010) 366–374

Y.L. Hsieh, in: Cotton, Elsevier, 2007, pp. 3–34

A.E. Ofomaja, E.B. Naidoo, Chem. Eng. J. 175 (2011) 260–270

L. Segal, J.J. Creely, A.E. Martin, C.M. Conrad, Text. Res. J. 29 (1959) 786–794

Y. Bulut, Z. Tez, J. Environ. Sci. 19 (2007) 160–166

R.M. Ali, H.A. Hamad, M.M. Hussein, G.F. Malash, Ecol. Eng. 91 (2016) 317–332

V. Fierro, V. Torné-Fernández, D. Montané, A. Celzard, Microporous Mesoporous Mater. 111 (2008) 276–284

Z. Kovacova, S. Demcak, M. Balintova, Proceedings 16 (2019) 52

P. SenthilKumar, S. Ramalingam, V. Sathyaselvabala, S.D. Kirupha, S. Sivanesan, Desalination 266 (2011) 63–71

D. Park, Y.-S. Yun, J.M. Park, Biotechnol. Bioprocess Eng. 15 (2010) 86–102

I. Morosanu, C. Teodosiu, C. Paduraru, D. Ibanescu, L. Tofan, N. Biotechnol. 39 (2017) 110–124

F. Bouhamed, Z. Elouear, J. Bouzid, J. Taiwan Inst. Chem. Eng. 43 (2012) 741–749

A.E. Ofomaja, E.I. Unuabonah, N.A. Oladoja, Bioresour. Technol. 101 (2010) 3844–3852

M.S. Rahman, M.R. Islam, Chem. Eng. J. 149 (2009) 273–280

S.A. Sadeek, N.A. Negm, H.H.H. Hefni, M.M. Abdel Wahab, Int. J. Biol. Macromol. 81 (2015) 400–409

K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen, Ind. Eng. Chem. Fundam. 5 (1966) 212–223

A. Labidi, A.M. Salaberria, S.C.M. Fernandes, J. Labidi, M. Abderrabba, J. Taiwan Inst. Chem. Eng. 65 (2016) 140–148

E. Worch, in: Adsorpt. Technol. Water Treat., DE GRUYTER, Berlin, 2012, pp. 41–76

S. Yildiz, Ecol. Chem. Eng. S. 24 (2017) 87–106

J. Li, J. Hu, G. Sheng, G. Zhao, Q. Huang, Colloids Surfaces A Physicochem. Eng. Asp. 349 (2009) 195–201

X. Wang, X. Liang, Y. Wang, X. Wang, M. Liu, D. Yin, S. Xia, J. Zhao, Y. Zhang, Desalination 278 (2011) 231–237

M. Gorgievski, D. Božić, V. Stanković, N. Štrbac, S. Šerbula, Ecol. Eng. 58 (2013) 113–122

M. Petrovic, T. Sostaric, L. Pezo, S. Stankovic, C. Lac-njevac, J. Milojkovic, M. Stojanovic, Chem. Ind. Chem. Eng. Q. 21 (2015) 249–259.

Published

05.01.2022

Issue

Section

Articles

How to Cite

PINE CONE POWDER FOR THE ADSORPTIVE REMOVAL OF COPPER IONS FROM WATER: Scientific paper. (2022). Chemical Industry & Chemical Engineering Quarterly, 27(4), 341-354. https://doi.org/10.2298/CICEQ200101001O

Similar Articles

61-70 of 139

You may also start an advanced similarity search for this article.