EVALUATION OF DIFFERENT MATHEMATICAL MODELS IN THE CFD-DEM SIMULATION OF CONICAL SPOUTED BED FLUID DYNAMICS

Scientific paper

Authors

  • J.N.M. BATISTA Federal University of São Carlos, Department of Chemical Engineering, SP, Brazil
  • R. BÉTTEGA Federal University of São Carlos, Department of Chemical Engineering, SP, Brazil

DOI:

https://doi.org/10.2298/CICEQ110707002B

Keywords:

drag model, particle rotation, turbulence model, sorghum grains

Abstract

The input parameters, empirical, and semi-empirical models significantly influ­ence the responses obtained by CFD-DEM simulations. In this work, the effects of three turbulence models, three conditions of the particle rotation, and five drag models, on the fluid dynamic behavior of a conical spout bed applied to the drying of sorghum grains were evaluated. Experimental data on the solids pressure drop, height, and shape of the fountain were used to validate the simulations. Results showed the importance of including the particle rot­ation in the model to approximate the results simulated with the experimental behavior. Compared with experimental data, considering the particle rotation by the Dennis et al. model, the deviation was 2% for the fountain height and 9.18% for the pressure drop. Whereas, for the model without the particle rot­ation, the deviations were 106.33 and 42.31% for the fountain height and pressure drop, respectively. For the analyzed case, the standard k-ε turbu­lence model showed a greater agreement with the experimental data. For the drag models evaluated, the best fit with the experimental data was obtained by the Koch-Hill drag model, followed by the Gidaspow model, with deviations less than 10%.

References

B. Hooshdaran, S.H. Hosseini, M. Haghshenasfard, M.N. Esfahany, M. Olazar, CAppl. Therm. Eng. 127 (2017) 224–232

E.F. Ahmadabadi, M. Haghshenasfard, M.N. Esfahany, Chem. Eng. Res. Des. 160 (2020) 476–485

J.N.M. Batista, R.C. Brito, R. Béttega, Chem. Ind. Chem. Eng. Q. 24 (2018) 369–378

A.S. Souza, J.T. Freire, R. Béttega, Ind. Eng. Chem. Res. 57 (2018) 13876–13888

J.N.M. Batista, D.A. Santos, R. Béttega, Particuology (2020)

F. Marchelli, D. Bove, C. Moliner, B. Bosio, E. Arato, Powder Technol. 321 (2017) 119–131

H. Zhang, M. Liu, T. Li, Z. Huang, X. Sun, H. Bo, Y. Dong, Powder Technol. 307 (2017) 175–183

S. Golshan, R. Zarghami, N. Mostoufi, Chem. Eng. Res. Des. 121 (2017) 315–328

F. Marchelli, C. Moliner, B. Bosio, E. Arato, Powder Technol. 353 (2019) 409–425

B. Launder, D.B. Spalding, Lectures in mathematical models of turbulence, Academic Press Inc, London, 1972

F.R. Menter, in Proceedings of 24th Fluid Dynamics Conference, July 6-9, 1993, Orlando, FL

B. Mahmoodi, S.H. Hosseini, G. Ahmadi, Particuology. 43 (2019) 171–180

F. Marchelli, Q.F. Hou, B. Bosio, E. Arato, A.B. Yu, Powder Technol. 360 (2020) 1253–1270

V. Salikov, S. Antonyuk, S. Heinrich, V.S. Sutkar, N.G. Deen, J.A.M. Kuipers, Powder Technol. 270 (2015) 622–636

S. Pietsch, S. Heinrich, K. Karpinski, M. Müller, M. Schönherr, F. Kleine, C Powder Technol. 316 (2017) 245–255

P. Breuninger, D. Weis, I. Behrendt, P. Grohn, F. Krull, S. Antonyuk, Particuology 42 (2019) 114–125

Y. Yue, T. Wang, Y. Shen, Powder Technol. 366 (2020) 736–746

M. Ebrahimi, E. Siegmann, D. Prieling, B.J. Glasser, J.G. Khinast, Adv. Powder Technol. (2017)

S. Yang, K. Luo, K. Zhang, K. Qiu, J. Fan, Powder Technol. 272 (2015) 85–99

D. Gidaspow, Multiphase flow and fluidization: Continuum and kinetic theory descriptions, Academic Press, New York, 1994

R. Béttega, C.A. da Rosa, R.G. Corrêa, J.T. Freire, Ind. Eng. Chem. Res. 48 (2009) 11181–11188

C.A. Da Rosa, J.T. Freire, Ind. Eng. Chem. Res. 48 (2009) 7813–7820

F. Wu, J. Zhang, X. Ma, W. Zhou, Adv. Powder Technol. 29 (2018) 1848–1858

C.Y. Wen, Y.H. Yu, Mechanics of Fluidization, Chem. Eng. Prog. Symp. Ser. 62 (1966) 100–111

R. Di Felice, Int. J. Multihase Flow 20 (1994) 153–159

L.W. Rong, K.J. Dong, A.B. Yu, Chem. Eng. Sci. 116 (2014) 508–523

R. Beetstra, M.A. van der Hoef, J.A.M. Kuipers, Fluid Mech. Transp. Phenom. 5 (2007) 489–501

D.L. Koch, R.J. Hill, Anu. Rev. Fluid Mech. 33 (2001) 619–647

Y. He, W. Peng, T. Tang, S. Yan, Y. Zhao, Adv. Powder Technol. 27 (2016) 93–104

Y. Zhang, Y. Zhao, L. Lu, W. Ge, J. Wang, C. Duan, Chem. Eng. Sci. 160 (2017) 106–112

S. Sarkar, M.A. Van Der Hoef, J.A.M. Kuipers, Chem. Eng. Sci. 64 (2009) 2683–269

F. Cello, A. Di Renzo, F.P. Di Maio, Chem. Eng. Sci. 65 (2010) 3128–3139

S. Tenneti, R. Garg, S. Subramaniam, Int. J. Multiphase Flow 37 (2011) 1072–1092

S.C.R. Dennis, S.N. Singh, D.B. Ingham, J. Fluid Mech. 101 (1980) 257–279

K.B. Mathur, N. Epstein, Spouted Beds, Academic Press, New York, 1974

B.P.B. Hoomans, J.A.M. Kuipers, W.J. Briels, W.P.M. Van Swaaij, Chem. Eng. Sci. 51 (1996) 99–118

Ansys, Chapter 4: Turbulence, ANSYS FLUENT Theory Guid, ANSYS, 2020.

Published

05.01.2022

Issue

Section

Articles

How to Cite

EVALUATION OF DIFFERENT MATHEMATICAL MODELS IN THE CFD-DEM SIMULATION OF CONICAL SPOUTED BED FLUID DYNAMICS: Scientific paper. (2022). Chemical Industry & Chemical Engineering Quarterly, 27(4), 329-340. https://doi.org/10.2298/CICEQ110707002B

Similar Articles

11-20 of 61

You may also start an advanced similarity search for this article.