CMC OF DIVERSE GEMINI SURFACTANTS MODELING USING A HYBRID APPROACH COMBINING SVR-DA

Original scientific paper

Authors

  • MAAMAR LAIDI Laboratory of Biomaterials and Transport Phenomena (LBMPT), University of Medea, Medea, Algeria
  • ABDALLAH ABDALLAH EL HADJ Laboratory of Biomaterials and Transport Phenomena (LBMPT), University of Medea, Medea, Algeria
  • CHERIF SI-MOUSSA Laboratory of Biomaterials and Transport Phenomena (LBMPT), University of Medea, Medea, Algeria
  • OTHMANE BENKORTEBI Laboratory of Biomaterials and Transport Phenomena (LBMPT), University of Medea, Medea, Algeria
  • MOHAMED HENTABLI Laboratory of Biomaterials and Transport Phenomena (LBMPT), University of Medea, Medea, Algeria
  • SALAH HANINI Laboratory of Biomaterials and Transport Phenomena (LBMPT), University of Medea, Medea, Algeria

DOI:

https://doi.org/10.2298/CICEQ200907048L

Keywords:

quantitative structure–property relationship, surfactants, critical micelle concentration, modelling, machine learning

Abstract

Quantitative structure-property relationship (QSPR) technique provides a suitable tool to predict the critical micelle concentration (CMC) of Gemini surf­actants from their structure descriptors. In this study, a comparative work was conducted to model the CMC property of 211 diverse Gemini surfactants based on their structural characteristics using linear and non-linear quantitative structure–property relationship models. Least squares model (OLS) and partial least squares (PLS) against k-nearest neighbours regression model (KNN), artificial neural network (ANN) and support vector regression (SVR) have been developed to model the CMC. Molecular descriptors were calculated and screened to remove unsuitable descriptors and improve the learning. Results indicate that the improved performance of support vector regression when the hyper-parameters are optimized using Dragonfly algorithm (SVR-DA) was highly capable of predicting the pCMC (-log CMC) values with an average absolute relative deviation (AARD) of 0.666 and coefficient of determination (R²) of 0.9971 for the global dataset.

References

A.R. Katritzky, L. Pacureanu, D. Dobchev, M. Karelson, J. Chem. Inf. Model. (2007) 782–793

C.Y. Hu, S.J. Hua, Y.L. Lin, Y.G. Deng, Y.Z. Hou, Y.F. Du, C. Di Dong, C.W. Chen, C.H. Wu, Separ. Purific. Technol. 243 (2020) 116797

S.K. Yadav, K. Parikh, S. Kumar, Colloids Surfaces, A 514 (2017) 47–55

H.L. Zhu, Z.Y. Hu, J.L. Wang, D.L. Cao, J. Mol. Liquids 195 (2014) 54–58

S.M. Shakil Hussain, M.S. Kamal, M. Murtaza, J. Mol. Liquids 296 (2019) 111837

M. Yi, Z. Huang, J. Hao, Langmuir 35 (2019) 9538–9545

M.S. Kamal, J. Surfact. Deterg. 19 (2016) 223–236.

T. Ma, H. Feng, H. Wu, Z. Li, J. Jiang, D. Xu, Z. Meng, W. Kang, Colloids Surfaces, A 581 (2019) 123800

A.M. Cardoso, C.M. Morais, A.R. Cruz, A.L. Cardoso, S.G. Silva, M.L. Do Vale, E.F. Marques, M.C. Pedroso De Lima, A.S. Jurado, Mol. Pharm.. 12 (2015) 716–730

C. Guo, P. Zhou, J. Shao, X. Yang, Z. Shang, Chemo-sphere 84 (2011) 1608–1616

L. Jiao, Y. Wang, L. Qu, Z. Xue, Y. Ge, H. Liu, B. Lei, Q. Gao, M. Li, Colloids Surfaces, A 586 (2020) 124226

Z. Kardanpour, B. Hemmateenejad, T. Khayamian, Anal. Chim. Acta 531 (2005) 285–291

Z. Wang, G. Li, X. Zhang, R. Wang, A. Lou, Colloids Surfaces, A 197 (2002) 37–45

K. Roy, H. Kabir, Chem.Eng. Sci. 81 (2012) 169–178

D.W. Roberts, Langmuir 18 (2002) 345–352

A.R. Katritzky, L.M. Pacureanu, S.H. Slavov, D.A. Dob-chev, D.O. Shah, M. Karelson, Comput. Chem. Eng. 33 (2009) 321–332

G. Absalan, B. Hemmateenejad, M. Soleimani, M. Akhond, R. Miri, QSAR Comb.Sci. 23 (2004) 416–425

K. Roy, H. Kabir, Chem. Eng. Sci. 87 (2013) 141–151

B. Bhhatarai, P. Gramatica, Environ. Sci. Technol. 45 (2011) 8120–8128

X. Li, G. Zhang, J. Dong, X. Zhou, X. Yan, M. Luo, J. Mol. Struc: THEOCHEM 710 (2004) 119–126

M. Poša, Steroids 76 (2011) 85–93

L. Jiao, X. Wang, S. Bing, Z. Xue, H. Li, Quím. Nova 38 (2015) 510–517

H.A. Martens, P. Dardenne, Chemomet. Intell. Lab. Sys. 44 (1998) 99–121

N. Pal, N. Saxena, A. Mandal, Colloids Surfaces, A 533 (2017) 20–32

T. Gaudin, P. Rotureau, I. Pezron, G. Fayet, Ind. Eng. Chem.Res. 55 (2016) 11716–11726

L. Jiao, X. Wang, S. Bing, Z. Xue, H. Li, RSC Adv. 5 (2015) 6617–6624

L. Jiao, X. Zhang, Y. Qin, X. Wang, H. Li, Chemomet. Intell. Lab. Sys. 157 (2016) 202–207

K. Parikh, S. Singh, A. Desai, S. Kumar, J. Mol. Liquids 278 (2019) 290–298

L. Jiao, Z. Xue, G. Wang, X. Wang, H. Li, Chemomet. Intell. Lab. Sys. 137 (2014) 91–96

A.S. Kulkarni, A.J. Kasabe, M.S. Bhatia, N.M. Bhatia, V.L. Gaikwad, AAPS PharmSciTech 20 (2019)

H. Benimam, C.S. Moussa, M. Hentabli, S. Hanini, M. Laidi, J. Chem. Eng. Data 65 (2020) 3161–3172

C.B. Carvalho, E.P. Carvalho, M.A.S.S. Ravagnani, Chem. Ind. Chem. Eng. Q. 26 (2020) 125–134

M. Beigi, M. Torki-Harchegani, M. Mahmoodi-Eshkaftaki, Chem. Ind. Chem. Eng. Q. 23 (2017) 251–258

A.A. El Hadj, C. Si-Moussa, S. Hanini, M. Laidi, Chem. Ind. Chem. Eng. Q. 19 (2013) 449–460

P.S. Milić, K.M. Rajković, P.M. Milićević, S.M. Milić, T.P. Brdarić, V.M. Pavelkić, Chem. Ind. Chem. Eng. Q. 19 (2013) 141–152

H. Golmohammadi, A. Rashidi, S.J. Safdari, Chem. Ind. Chem. Eng. Q. 19 (2013) 321–331

J.B. Savković-Stevanović, D.R. Francescetti, Chem. Ind. Chem. Eng. Q. 6 (2000) 361–371.

M. Esfahanian, M. Nikzad, G. Najafpour, A. Asghar Ghoreyshi, Chem. Ind. Chem. Eng. Q.19 (2013) 241–252

A. Ghaderi, S. Abbasi, A. Motevali, S. Minaei Chem. Ind. Chem. Eng. Q. 18 (2012) 283–293

M.S. Leite, M.A. Santos, E.M.F. Costa, A. Balieiro, Á.S. Lima, O.L. Sanchez, C.M.F. Soares, Chem. Ind. Chem. Eng. Q. 25 (2019) 369–382

A.A. Amooey, M. Ahangarian, F. Rezazadeh, Chem. Ind. Chem. Eng. Q. 20 (2014) 565–569

S.K. Lahiri, K.C. Ghanta, Asia-Pacific J. Chem. Eng. 5 (2010) 763–777

J. Ding, H. Wang, K. Dai, Y. Zi, Z. Shi, Chem. Ind. Chem. Eng. Q. 20 (2014) 29–38

Z. Kardanpour, B. Hemmateenejad, T. Khayamian, Anal. Chim. Acta 531 (2005) 285–291

J. Wu, H. Gao, D. Shi, Y. Yang, Y. Zhang, W. Zhu, J. Mol. Liquids 299 (2020) 112248

M.J. Rosen, L. Liu, JAOCS, J. Am. Oil Chem. Soc. 73 (1996) 885–890

E. Alami, G. Beinert, P. Marie, R. Zana, Langmuir 9 (1993) 1465–1467

M. Dreja, K. Heine, B. Tieke, G. Junkers, J. Colloid Interface Sci. 191 (1997) 131–140

G. Savelli, L. Brinchi, R. Germani, Surfact. Sci. Ser. (2001) 175–246

F.M. Menger, J.S. Keiper, Angew. Chem. Int.Ed. 39 (2000) 1906–1920

M. Dreja, W. Pyckhout-Hintzen, H. Mays, B. Tieke, Langmuir 15 (1999) 391–399

M. Dreja, S. Gramberg, B. Tieke, Chem. Commun. (1998) 1371–1372

A. Kumar, E. Alami, K. Holmberg, V. Seredyuk, F.M. Menger, Colloids Surfaces, A 228 (2003) 197–207

Kabir-ud-Din, P.A. Koya, J. Chem. Eng. Data 55 (2010) 1921–1929

M. Dreja, W. Pyckhout-Hintzen, B. Tieke, Macro-molecules 31 (1998) 272–280

X. Jiang, L. Zhou, Y. Li, Z. Chen, X. Hu, Langmuir 23 (2007) 11404–11408

M.M. Khalaf, A.H. Tantawy, K.A. Soliman, H.M. Abd El-Lateef, J. Mol. Struc. 1203 (2020) 127442

M. Dreja, B. Tieke, Langmuir 14 (1998) 800–807

A.M. Asemu, N.G. Habtu, M.A. Delele, B. Subramanyam, S. Alavi, J. Food Proc. Eng. 43 (2020) 1–19

E. Setiawan, Mudasir, K. Wijaya, IOP Conf. Ser. 742 (2020)

R. Soleimani, A.H. Saeedi Dehaghani, N.A. Shoushtari, P. Yaghoubi, A. Bahadori, Kor. J. Chem. Eng. 35 (2018) 1556–1569

A. Golbraikh, A. Tropsha, Mol. Divers. 5 (2000) 231–243

R. Todeschini, D. Ballabio, F. Grisoni, J. Chem. Inform. Model. 56 (2016) 1905–1913

I.E. Frank, R. Todeschini, The data analysis handbook, Elsevier, Amsterdam, 1994

C. Cortes, V. Vapnik, Machine Learning 20 (1995) 273–297.

Published

26.10.2021

Issue

Section

Articles

How to Cite

CMC OF DIVERSE GEMINI SURFACTANTS MODELING USING A HYBRID APPROACH COMBINING SVR-DA: Original scientific paper. (2021). Chemical Industry & Chemical Engineering Quarterly, 27(3), 299-312. https://doi.org/10.2298/CICEQ200907048L

Similar Articles

51-60 of 67

You may also start an advanced similarity search for this article.