DETERMINATION OF THE RESIDENCE-TIME DISTRIBUTION IN INDUSTRIAL DRYER FOR THE PRODUCTION OF RECYCLED POLYESTER

Original scientific paper

Authors

  • FELIPE ZAULI DA SILVA Federal University of Alfenas (UNIFAL-MG), Institute of Science and Technology, Poços de Caldas, MG, Brazil
  • IZABELLA CARNEIRO BASTOS Federal University of Alfenas (UNIFAL-MG), Institute of Science and Technology, Poços de Caldas, MG, Brazil
  • RAFAEL FIRMANI PERNA Federal University of Alfenas (UNIFAL-MG), Institute of Science and Technology, Poços de Caldas, MG, Brazil
  • SERGIO ANDRES VILLALBA MORALES Federal University of Alfenas (UNIFAL-MG), Institute of Science and Technology, Poços de Caldas, MG, Brazil

DOI:

https://doi.org/10.2298/CICEQ200121047Z

Keywords:

residence time, PET flakes, polyester fibers

Abstract

The study proposes the evaluation of the residence-time distribution (RTD) in situ in an industrial dryer for the production of recycled polyester fibers (PES) from colorless polyethylene terephthalate (PET) flakes without interruption of the production. A disturbance of the pulse type was employed, in which the tracer (blue PET flakes) had previously been crystalized and its concentration was obtained according to the time at the dryer outlet. Additionally, analyses of intrinsic viscosity and crystallization percentage of the PET flakes (colorless and blue) and PES intrinsic viscosity and color force were performed. By RTD, the mean residence time (322.8 min), the variance (1305.4 min2), the standard deviation (36.1 min) and the relative error (1.5%) were obtained when com­pared to the theoretical residence time, indicating the absence of preferred paths or flake agglomerates in the equipment. Finally, the characterization demonstrated that there was no alteration in the parameters of product quality during RTD evaluation, confirming the potential of application of this method­ology for diagnoses of continuous industrial processes.

References

A. Telli, N.J. Özdil, J. Eng. Fibers Fabr. 10 (2015) 47-60

M. Ahani, M. Khatibzadeh, M. Mohseni, Nanocomposites 2 (2016) 29-36

P.S. Upasani, A.K. Jain, N. Save, U.S. Agarwal, A.K.J. Kelkar, J. Appl. Polym. Sci. 123 (2011) 520-525

A.M. Al-Sabagh, F.Z. Yehia, G. Eshaq, A.M. Rabie, A.E. El Metwally, Egypt. J. Pet. 25 (2016) 53-64

J.C.T. Picazo, J.G.L. Bárcenas, A.G. Chávez, R.G. Nuñez, A.B. Petriciolet, C.A. Castillo, Fibers Polym. 15 (2014) 547-552

E.S. Guerra, E.V. Lima, Handbook of Polymer Synthesis, Characterization, and Processing, John Wiley & Sons Ltd, Hoboken, NJ, 2013, pp. 132-142

T. Meyer, J. Keurentjes, Handbook of Polymer Reaction Engineering, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005, pp. 50-53

A. Elamri, K. Abid, O. Harzallah, A. Lallam, Am. J. Nano Res. Appl. 3 (2015) 11-16

S.A. Jabarin, E.A. Lofgren, J. Appl. Polym. Sci. 32 (1986) 5315-5335

B.D. Whitehead, Ind. Eng. Chem. Process Des. Dev. 16 (1977) 341-346

A.S. Mujundar, Handbook of Industrial Drying, 4th ed., CRC Press, Boca Raton, FL, 2015, pp. 204-207

K.C. Seavey, Y.A. Liu, Step-Growth Polymerization Process Modeling and Product Design, John Wiley & Sons Ltd, Hoboken, NJ, 2008, pp. 111-118

A. Lepschi, G. Gerstorfer, J. Miethlinger, AIP Conf. Proc. 1664 (2015) 1-4

T. Karches, K. Buzas, Int. J. Comput. Methods Exp. Meas. 1 (2013) 132-141

P.V. Danckwerts, Chem. Eng. Sci. 2 (1953) 1-13

O. Levenspiel, Chemical Reaction Engineering, 3rd ed., John Wiley & Sons, New York, 1999, pp. 320-333

I.L. Gamba, S.M. Damian, D.A. Estenoz, N. Nigro, M.A. Storti, D. Knoeppel, Int. J. Chem. React. Eng. 10 (2012) 201-204

A. Gbané, A. Fofana, K. F. Koffi, Asian J. Applied Sci. 9 (2016) 53-61

H.S. Fogler, Elementos de Engenharia das Reações Químicas, 4th ed., LTC, Rio de Janeiro, 2009, pp. 297-299

E.B. Nauman, Chemical Reactor Design, Optimization, and Scaleup, 2nd ed., John Wiley & Sons, Hoboken, NJ, 2008, pp. 65-68

S. Bürkle, L.G. Becker, M.A. Agizza, A. Dreizler, V. Ebert, S. Wagner, Springer-Verlag, Berlin, 2017, pp. 7-8

D. Wolf, N. Rolin, D.H. White, Polym. Eng. Sci. 26 (1986) 640-646

M.C. Chevrel, S. Hoppe, D. Meimaroglou, D. Chapron, P. Bourson, J. Wilson, P. Ferlin, L. Falk, A. Durand, Macromol. React. Eng. 10 (2016) 406-414

H. Lobo, J. V. Bonilla, Handbook of Plastics Analysis, Marcel Dekker, Inc., New York, 2003, pp. 101-105

H. Zhang, I.M. Ward, Macromolecules 28 (1995) 7622-7629

ASTM, American Society for Testing and Materials, D2857 - Standard Practice for Dilute Solution Viscosity of Polymers, ASTM International (ASTM), 2016

P.M. Visakh, M. Liang, Poly(Ethylene Terephthalate) Based Blends, Composites and Nanocomposites, Elsevier, Oxford, 2015, pp. 88-90

F.W.J. Billmeyer, Polym. Sci. 4 (1949) 83-86

A. Pati, R.B. Dash, J. Math. Comput. Sci. 3 (2012) 526-529

M.A.G. Ruggiero, Cálculo numérico: aspectos teóricos e computacionais. Makron Books, São Paulo, 2006, pp. 85-90

A.P. Torres, F.A.R. Oliveira, J. Food Eng. 36 (1998) 1-30

D. Wolf, D.H. White, AIChE J. 22 (1976) 122-131

O. Levenspiel, Tracer Technology, Modeling the Flow of Fluids, Springer, New York, 2012, pp. 113-114

V. Shah, Handbook of Plastics Testing and Failure Analysis, John Wiley & Sons, Inc. Hoboken, NJ, 2007, pp. 35-38

ASTM, American Society for Testing and Materials. D1895 - Standard Test Methods for Apparent Density, Bulk Factor, and Pourability of Plastic Materials, ASTM International, 2017

I.A. Bhatti, S. Adeel, S. Parveen, M. Zuber, J. Saudi Chem. Soc. 20 (2016) 178-184

T.A. Elmaaty, E. El-Aziz, J. Ma, J.F. El-Taweel, S. Okubayashi, Fibers 3 (2015) 309-322

N. Yaman, E. Ozdogan, N. Seventekin, J. Eng. Fibers Fabr. 7 (2012) 40-46

M. Akgun, B. Becerir, H. Alpay, Fibers Polym. 8 (2007) 495-500

HunterLab, EasyMatch QC 4.70 and Above Users Manual - Hunter LabScan XE®, Hunter Associates Labor¬atory Inc., Reston, VA, 2009, pp. 1-3

S. Fakirov, Handbook of Thermoplastic Polymers: Homopolymers, Copolymers, Blends, and Composites, Wiley-VCH Verlag GmbH, Weinheim (2002), p. 23-29.

A.B. Thompson, D.W. Woods, Nature 176 (1955) 78-79

M. Zanin, S.D. Mancini, Resíduos plásticos e reciclagem: aspectos gerais e tecnologia, EdUFSCar, São Carlos, 2015, pp. 79-87

J. Scheirs, T.E. Long, Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters, John Wiley & Sons Ltd., Chichester, 2003, pp. 44-54

N. George, T. Kurian, Ind. Eng. Chem. Res. 53 (2015) 14185-14198

H.Y. Yamashita, Y. Nakano, Polyester: Properties, Preparation and Applications, New Science Publishers, New York, 2008, pp. 60-67

K. Senthilkumar, I. Siva, J.T. Winowlin, M. Jappes, M. Vikneshwararaj, P. Karthick, P. Devakumar, J. Chem. Pharm. Sci. 7 (2015) 172-174

F. Awaja, D. Pavel, Eur. Polym. J. 41 (2005) 1453-1477

H.F. Mark, N.M. Bikales, C.G. Overberger, G. Menges, J.I. Kroschwitz, Polyesters to Polypeptide Synthesis, Encyclopedia of Polymer Science and Engineering, 2nd ed., Wiley-Interscience, Oxford, 1988, pp. 39-44

F. W. Billmeyer, Textbook of Polymer Science, 3rd (Ed.), John Wiley & Sons, Oxford, 1984, pp. 17-24

H.S. Katz, J.V. Mileski, Handbook Of Fillers For Plastics, Van Nostrand Reinhold, New York, 1987, pp. 11-12.

Published

26.10.2021

Issue

Section

Articles

How to Cite

DETERMINATION OF THE RESIDENCE-TIME DISTRIBUTION IN INDUSTRIAL DRYER FOR THE PRODUCTION OF RECYCLED POLYESTER: Original scientific paper. (2021). Chemical Industry & Chemical Engineering Quarterly, 27(3), 289-298. https://doi.org/10.2298/CICEQ200121047Z

Similar Articles

11-20 of 44

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)