CO2 REFORMING OF CH4 OVER M(Ca,Ba,Sr)XLa1-XNiO3 PEROVSKITES USED AS COKE RESISTANT CATALYST PRECURSOR

Original scientific paper

Authors

  • ANA CAROLINA TREVISANI SOUZA Chemical Engineering Department, Federal University of São João Del Rei, Campus Alto Paraopeba, Minas Gerais, Brazil
  • MARCELO DA SILVA BATISTA Chemical Engineering Department, Federal University of São João Del Rei, Campus Alto Paraopeba, Minas Gerais, Brazil

DOI:

https://doi.org/10.2298/CICEQ190620040T

Keywords:

alkaline-doped LaNiO3, barium, calcium, strontium, coke, dry reforming of methane

Abstract

Methane and carbon dioxide are greenhouse gases that have been converted into synthesis gas for the production of oxygenated chemicals and hydrocar­bons. In this paper, M(Ca, Ba, Sr)xLa1-xNiO3 (x = 0.0, 0.3 and 0.5) doped per­ovskites were successfully synthesized as catalyst precursors aiming at high catalytic activity and stability in the CO2 reforming of methane. These perov­skites were characterized by X-ray diffraction (XRD), temperature programmed reduction by H2 (H2-TPR) and O2-temperature programmed oxidation (TPO). Its activity and carbon suppression were investigated in the CO2 reforming of methane. Results showed formation of perovskite structure, but La2NiO4 spinel and NiO were also detected in doped perovskites. The Ca, Ba and Sr partial substitution had evident influence on the reduction behavior of perovskites. All the doped perovskites used as catalyst precursors had better catalytic perform­ance than LaNiO3. However, increasing the doping content decreased activity. Among doped perovskites, Ca0.3La0.7NiO3 showed better catalytic performance for the methane reforming reaction.

References

D.A. Wood, C. Nwaoha, B.F. Towler, J. Nat. Gas Sci. Eng. 9 (2012) 196-208

Q. Fei, M.T. Guarnieri, L. Tao, L.M. Laurens, N. Dowe, P.T. Pienkos, Biotechnol. Adv. 32 (2014) 596-614

M. Delavar, A.A. Ghoreyshi, M. Jahanshahi, S. Khalili, N. Nabian, Chem. Ind. Chem. Eng. Q. 18 (2012) 193-207

E.F. Sousa-Aguiar, L.G. Appel, C. Mota, Catal. Today 101 (2005) 3-7

R. Horn, R. Schlögl, Catal. Lett. 145 (2015) 23-39

A.S. Jesus, M.L. Maloncy, M.S. Batista, React. Kin. Mech. Catal. 122 (2017) 501-511

S. Zeng, L. Zhang, X. Zhang, Y. Wang, H. Pan, H. Su, Int. J. Hydrogen Energy 37 (2012) 9994-10001

S.T. Oyama, P. Hacarlioglu, Y. Gu, D. Lee, Int. J. Hydrogen Energy 37 (2012) 10444-10450

M. Usman, W.M.A. Wan Daud, H.F. Abbas, Renew. Sustain. Energy Rev. 45 (2015) 710-744

A.T. Najafabadi, Int. J. Energy Res. 37 (2013) 485-499

L. Pino, C. Italiano, A. Vita, M. Laganà, V. Recupero, Appl. Catal., B 218 (2017) 779-792

M.M.B. Noureldin, N.O. Elbashir, K.J. Gabriel, M.M.

El-Halwagi, ACS Sustain. Chem. Eng. 3 (2015) 625-636

B. Wang, S. Albarracín-Suazo, Y. Pagán-Torres, E. Nikolla, Catal. Today 285 (2017) 147-158

B. Abdullah, N.A. Ghani, D.V. Vo, J. Cleaner Prod. 162 (2017) 170-85

J. Horlyck, S. Lewis, R. Amal, J. Scott, Top. Catal. 61 (2018) 1842–1855

S. Li, J. Gong, Chem. Soc. Rev. 43 (2014) 7245-7256

N.A. Aramouni, J.G. Touma, B.A. Tarboush, J. Zeaiter, M.N. Ahmad, Renew. Sustain. Energy Rev. 82 (2018) 2570–2585

M.M. Nair, S. Kaliaguine, F. Kleitz, ACS Catal. 4 (2014) 3837-3846

E.H. Yang, Y.S. Noh, S. Ramesh, S.S. Lim, D.J. Moon, Fuel Process. Technol. 134 (2015) 404-413

G. Valderrama, C.U. Navarro, M.R. Goldwasser, J. Power Sources 234 (2013) 31-37

K. Sutthiumporn, T. Maneerung, Y. Kathiraser, S. Kawi, Int. J. Hydrogen Energy 37 (2012) 11195-11207

S.M. Lima, J.M. Assaf, M.A. Peña, J.L.G. Fierro, Appl. Catal. 311 (2006) 94-104

G. Wu, S. Li, C. Zhang, T. Wang, J. Gong, Appl. Catal., B 144 (2014) 277-285

Q. Yang, G. Liu, Y. Liu, Ind. Eng. Chem. Res. 57 (2018) 1-17

S.O. Choi, S.H. Moon, Catal. Today 146 (2009) 148-153

M. Morales, F. Espiell, M. Segarra, Int. J. Hydrogen Energy 39 (2014) 6454-6461

M. Morales, M. Segarra, Appl. Catal. 502 (2015) 305-311

P. Dezvareh, H. Aghabozorg, M.H. Sadr, K. Zare, Orient. J. Chem. 34 (2018) 1469-1477

S. Dama, S.R. Ghodke, R. Bobade, H.R. Gurav, S. Chilukuri, Appl. Catal., B 224 (2018) 146-158

S.M. Lima, M.A. Peña, J.L.G. Fierro, J.M. Assaf, Catal. Lett. 124 (2008) 195-203

S. Liu, Q. Liu, J.L. Luo, ACS Catal. 6 (2016) 6219-6228

J. Zhu, H. Li, L. Zhong, P. Xiao, X. Xu, X. Yang, Z. Zhao, J. Li, ACS Catal. 4 (2014) 2917-2940

G. Valderrama, A. Kiennemann, C.U. Navarro, M.R. Goldwasser, Appl. Catal. 565 (2018) 26-33

J. Rynkowski, P. Samulkiewicz, A.K. Ladavos, P.J. Pomonis, Appl. Catal. 263 (2004) 1-9

R.C. Rabelo-Neto, H.B.E. Sales, C.V.M. Inocêncio, E. Varga, A. Oszko, A. Erdohelyi, F.B. Noronha, L.V. Mattos, Appl. Catal., B 221 (2018) 349-361.

Downloads

Published

26.10.2021

Issue

Section

Articles

How to Cite

CO2 REFORMING OF CH4 OVER M(Ca,Ba,Sr)XLa1-XNiO3 PEROVSKITES USED AS COKE RESISTANT CATALYST PRECURSOR: Original scientific paper. (2021). Chemical Industry & Chemical Engineering Quarterly, 27(3), 215-221. https://doi.org/10.2298/CICEQ190620040T

Similar Articles

11-20 of 21

You may also start an advanced similarity search for this article.