THIN-LAYER DRYING MODEL OF Cosmos caudatus

Original scientific paper

Authors

  • NORLIZA ABDUL LATIFF 1Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia and Innovation Centre in Agritechnology, Universiti Teknologi Malaysia, Muar, Johor, Malaysia
  • LUQMAN CHUAH ABDULLAH Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
  • PEI YING ONG Innovation Centre in Agritechnology, Universiti Teknologi Malaysia, Muar, Johor, Malaysia
  • NOR AMAIZA MOHD AMIN Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

DOI:

https://doi.org/10.2298/CICEQ191121038L

Keywords:

thin-layer drying model, Cosmos caudatus, effective moisture diffusivity, activation energy, thermal convection oven

Abstract

Drying kinetic models and energy characteristics are well known tools to eva­lu­ate and predict the most suitable drying physiochemical conditions for a parti­cular product. In this study, a thin-layer drying model was developed to best describe the drying kinetic behaviour of Cosmos caudatus. The drying experi­ments were conducted using a thermal convection oven and C. caudatus leaves were dried at five different temperatures (40, 50, 60, 70, 80 °C). Six dif­ferent thin-layer drying models were proposed and applied to select the best drying model by fitting to the experimental moisture ratio data. The proposed drying models included Page, Modified Page, Lewis, Henderson-Pabis, Two Term and Weibull, and the results were statically compared and evaluated based on their goodness of fit. Among these, the Page model was found to best represent the thin-layer drying behaviour of C. caudatus with 99.76%, 5.93´10-5, 9.68´10-5 for the coefficients determination (R2), reduced chi-square (c2), and root mean square error (RMSE), respectively. The average effective moisture diffusion coefficient (Deff) for the temperature 40 to 80 °C ranged from 4.12´10-12 to 24.71´10-12 m2/s, while the activation energy (Ea) was calculated at 39.35 kJ/mol based on the Arrheniuss equation.

References

S. Moshawih, M.S. Cheeme, Z. Ahmad, Z.A. Zakaria, M.N. Hakim, Int. Res. J. Educ. Sci. 1 (2017) 12-31

S.H. Cheng, M.Y. Barakatun-Nisak, J. Anthony, A. Ismail, J. Res. Med. Sci. (2015) 1000-1006

E.W.C. Chan, S.K. Wong, H.T. Chan, J. Nat. Rem. 16 (2017) 137-147

H.A. Rahman, S. Nazamid, F. Abas, A. Ismail, M.W. Muhammad, A.A. Hamid, Int. J. Food Prop. 20 (2017) 2616-2629

A. Mediani, F. Abas, A. Khatib, C.P. Tan, Molecules. 18 (2013) 10452-10464

A. Mediani, F. Abas, C. Tan, A. Khatib, Antioxidants 3 (2014) 358-370

M.M.A. Sharifuldin, Z. Ismail, A.F.A. Aisha, E.K. Seow, H.K. Beh, Qual. Assur. Saf. Crop. Foods. 8 (2016) 617-622

S.H. Cheng, A. Ismail, J. Anthony, O.C. Ng, A.A. Hamid, M.Y. Barakatun-Nisak, J. Evidence-Based Comple¬mentary Altern. Med. (2015) 1-7

H. Li, L. Xie, Y. Ma, M. Zhang, Y. Zhao, X. Zhao, LWT - Food Sci. Technol. 101 (2019) 630–638

K.Y. Pin, T.G. Chuah, A.A. Rashih, C.L. Law, M.A. Rasadah, T.S.Y. Choong, Dry Technol. 27 (2009) 149–155

J. Chen Z. Ying, F. Sheng, M. Yuecheng, K. Xin, X. Xuejiao, Z. Xiaobo, Adv. J. Food Sci. Technol. 5 (2013) 1214-1219

H. Darvishi, A.R. Asl, A. Asghari, M. Azadbakht, G. Najafi, J. Khodaei, J. Saudi Soc. Agric. Sci. 13 (2014) 130–138

T.V.L. Nguyen, M.D. Nguyen, D.C. Nguyen, L.G. Bach, T.D. Lam, Processes 7 (2019) 2-11

A.K. Babu, G. Kumaresan, V.A. Aroul, R. Velraj, Renew. Sustain. Energy Rev. 90 (2018) 536–556

N.H.A. Tajudin, S.M. Tasirin, W.L. Ang, M.I. Rosli, L.C. Lim, Food Bioprod. Process. 118 (2019) 40–49

D.I. Onwude, N. Hashim, R.B. Janius, N.M. Nawi, K. Abdan, Compr. Rev. Food Sci. Food Saf. 15 (2016) 599–618

U.E. Inyang, I.O. Oboh, B.R. Etuk, Adv. Chem. Eng. Sci. 8 (2018) 27–48

A. Benseddik, A. Azzi, M.N. Zidoune, K. Allaf, Eng. Agric. Environ. Food. 11 (2018) 220-231

H. Kucuk, A. Midilli, A. Kilic, I. Dincer, Dry Technol. 32 (2014) 757–773

P.C. Panchariya, D. Popovic, L. Sharma, J. Food Engr. 52 (2002) 349–57

A.K. Karthikeyan, S. Murugavelh, Renew. Energy 128 (2018) 305–312

O.R. Alara, N.H. Abdurahman, O.A. Olalere, J. Saudi Soc. Agric. Sci. 18 (2019) 309–315

O. Bensebia, K. Allia, J. Essent. Oil-Bear. Plants. 18 (2015) 99–111

D.M. Kadam, R.K. Goyal, M.K. Gupta, J. Med. Plant. Res. 5 (2011) 4721-4730

Y.Y. Hee, G.H. Chong, Int. Food Res. J. 22 (2015) 393–397

N. Karakaplan, E. Goz, E. Tosun, and M. Yuceer, J. Food Process. Preserv. 43 (2019) 1–10

A. Maskan, S. Kaya, M. Maskan, J. Food Eng. 54 (2002) 81–88

D.P.M. Dimitrios A. Tzempelikos, Alexandros P. Vourus, Archilleas V. Bardaks, Andronikos E. Filios, J. Med. Plant. Res. 5 (2011) 4721-4730

W.P. da Silva, C.M.D.P.S. e Silva, F.J.A. Gama, J.P. Gomes, J. Saudi Soc. Agric. Sci. 13 (2014) 67-74

I. Doymaz, Int. J. Food Prop. 13 (2010) 486–497

A. Mohammadi, S. Rafiee, A. Keyhani, Am.-Eurasian J. Agric. Environ. Sci. 3 (2008) 802-805

S. Darıcı, S. Şen, Heat Mass Transf. 51 (2015)1167–1176

M. Younis, D. Abdelkarim, A. Zein El-Abdein, Saudi J. Biol. Sci. 25 (2018) 332-338.

Downloads

Published

14.07.2021

Issue

Section

Articles

How to Cite

THIN-LAYER DRYING MODEL OF Cosmos caudatus: Original scientific paper. (2021). Chemical Industry & Chemical Engineering Quarterly, 27(2), 199-206. https://doi.org/10.2298/CICEQ191121038L

Similar Articles

71-80 of 99

You may also start an advanced similarity search for this article.