STUDIES ON THERMOPHYSICAL PROPERTY VARIATIONS OF GRAPHENE NANOPARTICLE SUSPENDED ETHYLENE GLYCOL/WATER
Original scientific paper
DOI:
https://doi.org/10.2298/CICEQ200504036PKeywords:
graphene, nanoparticle, thermophysical property, ethylene glycol, waterAbstract
The objective of the study is to determine the thermophysical property variations (such as viscosity, density, specific heat capacity and thermal conductivity) of graphene suspended base fluid (ethylene glycol (EG)/water (W)), with respect to graphene nanoparticle concentration and hot fluid inlet temperature. Graphene nanoparticle concentrations (0.2, 0.4, 0.6, 0.8 and 1 vol.%) and the base fluid of 30:70 vol.% of EG: Water is prepared initially. The impact of graphene nanoparticle addition on base fluids based on experimentation in the commercial plate heat exchanger was studied. In this experiment, the hot fluid inlet temperature was varied at 55, 65 and 75 °C. The experimental results of thermophysical properties were compared with the selected models proposed in the literature. Einstein (1956), Kitano (1981) and Bachelor models (1977) have been used to consider the effect of viscosity. The measured density and specific heat capacity were validated with Pak and Cho and Xuan models, respectively. To consider the effect of thermal conductivity, three different models (Maxwell (1954), Vajjah (2010) and Sahoo (2012)) have been used. Study revealed that the thermophysical properties of base fluid significantly affect the graphene nanoparticle suspension.
References
M. Sabiha, R. Saidur, S. Mekhilef, O. Mahian, Renewable Sustainable Energy Rev.51 (2015) 1038-1054
S. Sarafraz, M. Peyghambarzadeh, N. Vaeli, Chem. Ind. Chem. Eng. Q. 18 (2012) 315-327
S.U.S. Choi, S. Lee, S. Li, J.A. Eastman, J. Heat Transfer 121 (1999) 280-289
M. Sarafraz, A.S. Fazel, Y. Hasanzadeh, A. Arabsham-sabadi, S. Bahram, Chem. Ind. Chem. Eng. Q. 18 (2012) 11-18
R. Prasher, D. Song, J. Wang, P. Phelan, Appl. Phys. Lett. 89 (2006) 133108
D.P. Kulkarni, D.K. Das, S.L. Patil, J. Nanosci. Nano-technol. 7 (2007) 2318–2322
M.M. Sarafraz, M. Jafarian, M. Arjomandi, G.J. Nathan, Appl. Energy 195(2017) 702-712
C.T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Maré, S. Boucher, Int. J. Heat Fluid Flow 28 (2007) 1492–1506
P. Namburu, D. Kulkarni, A. Dandekar, D. Das, Micro Nano Lett. 2 (2007) 67–71
L. Godson, B. Raja, D.M. Lal, S. Wongwises, Exp. Heat Transfer 23 (2010) 317–332
M.M. Sarafraz, F. Hormozi, M. Kamalgharibi, Heat Mass Transf. 50(2014) 1237-1249
M.M. Sarafraz, Chem. Biochem. Eng. Q. 30 (2017) 489-500
R.S. Vajjha, D.K. Das, B.M. Mahagaonkar, Pet. Sci. Technol. 27 (2009) 612–624
O. Mahian, A. Kianifar, S.A. Kalogirou, I. Pop, S. Wongwises, Int. J. Heat Mass Transfer 57 (2013) 582–594
T. Yiamsawasd, A.S. Dalkilic, S. Wongwises, Curr. Nanosci. 8 (2012) 939–944
J.R. Satti, D.K. Das, D. Ray, Int. J. Heat Mass Transfer 94 (2016) 343–353
G.J. Lee, C.K. Kim, M.K. Lee, C.K. Rhee, S. Kim, C. Kim, Thermochim. Acta. 542 (2012) 24–27
Y. Xuan, Q. Li, J. Heat Transfer 125 (2003) 151-155
J.A. Eastman, S.U.S Choi, S. Li, W. Yu, L.J. Thompson, Appl. Phys. Lett. 78 (2001) 718–720
S.K. Das, N. Putra, P. Thiesen, W. Roetzel, J. Heat Transfer 125 (2003) 567-574
S.M.S. Murshed, Heat Transfer Eng. 33 (2012) 722–731
W. Evans, J. Fish, P. Keblinsk, Appl. Phys. Lett. 88 (2006) 093116
C.H. Li, G. Peterson J. Appl. Phys. 99 (2006) 084314
R.S. Vajjha, D.K. Das, Int. J. Heat Mass Transfer 52 (2009) 4675–4682
H. Xie, J. Wang, T. Xi, Y. Liu, Int. J. Thermophys. 23 (2002) 571-580
I. Palabiyik, Z. Musina, S. Witharana, Y. Ding, J. Nanopart. Res. 13 (2011) 5049–5055
O. Pourmehran, M. M. Sarafraz, M. Rahimi-Gojiri, D. D. Ganji, J. Taiwan Inst. Chem. Eng., 2018, Article in press
B.C. Sahoo, D.K. Das, R.S. Vajjha, J.R. Satti, J. Nanotechnol. Eng. Med. 3 (2012) 041006
S.S.J. Aravind, S. Ramaprabh. RSC Adv. 3 (2013) 4199-4206
S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 24 (2018) 309-318
L.S. Sundar, M.K. Singh, A.C.M Sousa, Int. Commun. Mass Transfer 49 (2013) 17–24
B. Barbés, R. Páramo, E. Blanco, M.J. Pastoriza-Gallego, M.M. Piñeiro, J.L. Legido, J. Therm. Anal. Calorim. 111 (2013) 1615–1625
N. Ahmed, L.G. Asirvatham, J. Titus, J.R. Bose, S. Wongwises, Int. Commun. Heat Mass Transfer 70 (2016) 66-74
S.P. Manikandan, R. Baskar, Period. Polytech., Chem. Eng. 62 (2018) 317-322
S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 27 (2021) 15–20
M. M. Sarafraz, M. Arjomandi, Appl. Therm. Eng. 137 (2018) 700-709
J.R. Satti, D.K. Das, D. Ray, Int. J. Heat Mass Trans. 107 (2017) 871–881
M.M. Sarafraz, S. Peyghambarzadeh, F.S. Alavi, Chem. Ind. Chem. Eng. Q. 18 (2012) 577-586
M.M. Sarafraz, M. Arjomandi, Int. Commun. Mass Transfer 94 (2018) 39-46
M.M. Sarafraz, O. Pourmehran, B. Yang, M. Arjomandi, Renew. Energy 136(2019) 884-895
M. Sarafraz, M.R. Safaei, Renew. Energy 142(2019) 364-372
M.M. Sarafraz, O. Pourmehran, B. Yang, M. Arjomandi, R. Ellahi, Int. J. Therm. Sci. 147(2020) 106131
W.I. Liu, O. Malekahmadi, S.A. Bagherzadeh, M. Ghash¬ang, A. Karimipour, S. Hasani, T. Iskander, M. Goodarzi, Int. Commun. Mass Transfer 109(2019) 104333
M. Bahiraei, H. Kiani Salmi, M.R. Safaei, Energy Convers. Manage. 180(2018) 72-82
M. Bahiraei, N. Mazaheri, F. Aliee, M.R. Safaei, Powder Technol. 355(2019) 278-288
M. Goodarzi, A.S. Kherbeet, M Afrand, E. Sadeghine-zhad, M. Mahrali, P. Zahedi, S. Wongwises, M. Dahari, Int. Commun. Mass Transfer 76(2016) 16-23
H. Khan, M.E.M. Soudagar, R.H. Kumar, M.R. Safaei, M. Farooq, A. Khidmatgar, N.R. Banapurmath, R.A. Farade, M.M. Abbas, A. Afsal, W. Ahmed, M. Goodarzi, S.N. Taqui, Symmetry 12(2020) 961
M.R. Safaei, M. Safdari Shadloo, M.S. Goodarzi, A. Hadjadj, H.R. Goshayeshi, M. Afrand, S.N. Kazi, Adv. Mech. Eng. (London, U. K.) 8 (2016) 1-14
M.R. Safaei, H.R. Goshayeshi, I. Chaer, Energies (Basel, Switz.) 12 (2019) 1-13
M.M. Sarafraz, M.R. Safaei, Z. Tian, M. Goodarzi, E.P. Bandarra Filho, M. Arjomandi, Energies (Basel, Switz.) 12 (2019) 1-17
M.M. Sarafraz, I. Tlili, Z. Tian, M. Bakouri, M.R. Safaei, M.S. Goodarzi, Appl. Sci. 9 (2019) 1-11
H. Yarmand, S. Gharehkhani, S.F. Seyed Shirazi, M. Goodarzi, A. Amiri, W.S. Sarsama, M.S. Alehashem, M. Dahari, S.N. Kazi, Int. Commun. Heat Mass Transfer 77 (2016) 15-21
W.S. Hummers, R.E. Offeman, J. Amer. Chem. Soc. 80 (1958) 1339.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.