Xanthomonas campestris BIOCONTROL AGENT: SELECTION, MEDIUM FORMULATION AND BIOPROCESS KINETIC ANALYSIS

Original scientific paper

Authors

  • JOVANA GRAHOVAC University of Novi Sad, Faculty of Technology Novi Sad, Novi Sad, Serbia
  • IVANA PAJČIN University of Novi Sad, Faculty of Technology Novi Sad, Novi Sad, Serbia
  • VANJA VLAJKOV University of Novi Sad, Faculty of Technology Novi Sad, Novi Sad, Serbia
  • ZORANA RONČEVIĆ University of Novi Sad, Faculty of Technology Novi Sad, Novi Sad, Serbia
  • JELENA DODIĆ University of Novi Sad, Faculty of Technology Novi Sad, Novi Sad, Serbia
  • DRAGOLJUB CVETKOVIĆ University of Novi Sad, Faculty of Technology Novi Sad, Novi Sad, Serbia
  • ALEKSANDAR JOKIĆ University of Novi Sad, Faculty of Technology Novi Sad, Novi Sad, Serbia

DOI:

https://doi.org/10.2298/CICEQ200508032G

Keywords:

Bacillus, biological control, black rot, carbon source, ultivation, culti¬vation, organic nitrogen source

Abstract

Black rot, caused by Xanthomonas campestris pv. campestris, is one of the most important diseases of cruciferous crops which causes significant yield losses. Biological control of black rot by microbial biocontrol agents represents a promising alternative to chemical treatments and good agricultural practices which show only limited success. This study was carried out to assess a potential of different antagonists, including Bacillus, Pseudomonas, Lacto­bacil­lus, Streptomyces, Saccharomyces and Trichoderma genera, for biological control of black rot. Cultivation broth samples and their filtrates were examined against seven X. campestris strains, isolated from diseased cru­ciferous plants, using the diffusion-disc method. Bacillus velezensis has showed the highest inhibition zone diameter of 35.62±3.76 mm. Afterwards, different combinations of carbon and nitrogen sources were used in the culti­vation medium to maxi­mize antagonistic activity of B. velezensis. The best combinations were gly­cerol and yeast extract, lactose and peptone, as well as sucrose and yeast extract, suggesting the potential of biodiesel, dairy and sugar industry effluents in the production of bioactive compounds effective against the black rot patho­gen. The validation experiment was performed in a laboratory-scale bioreactor, in order to investigate bioprocess kinetics of biomass growth and carbon source consumption, using the cultivation medium containing the optimal car­bon and nitrogen source.

References

A. Aires, C.S.P. Dias, R. Carvalho, M.H. Oliveira, A.A. Monteiro, M.V. Simões, E.A.S. Rosa, R.N. Bennett, M.J. Saavedra, Sci. Hortic. 129 (2011) 503–510

J.G. Vicente, E.B. Holub, Mol. Plant Pathol. 14 (2013) 2–18

J.D. Taylor, J. Conway, S.J. Roberts, D. Astley, J.G. Vicente, Phytopathology 92 (2002) 105–111

C.A. Nunes, Eur. J. Plant Pathol. 133 (2012) 181–196

R.R. Sharma, D. Singh, R. Singh, Biol. Control 50 (2009) 205–221

A. Pérez-García, D. Romero, A. de Vicente, Curr. Opin. Biotechnol. 22 (2011) 187–193

S. Compant, B. Duffy, J. Nowak, C. Clément, E.A. Barka, Appl. Environ. Microbiol. 71 (2005) 4951–4959

C.L. Luna, R.L.R. Mariano, A.M. Souto-Maior, Braz. J. Chem. Eng. 19 (2002) 133–140

E.G. Wulff, J.W.L. van Vuurde, J. Hockenhull, Plant Soil 255 (2003) 463–474

S.M.S. Massomo, C.N. Mortensen, R.B. Mabagala, M.A. Newman, J. Hockenhull, J. Phytopathol. 152 (2004) 98–105

L. Monteiro, R.D.R. Mariano, A.M. Souto-Maior, Braz. Arch. Biol. Technol. 48 (2005) 23–29

P. Zhao, Y. Xue, W. Gao, J. Li, X. Zu, D. Fu, X. Bai, Y. Zuo, Z. Hu, F. Zhang, Peptides 101 (2018) 10-16

I. Nikolić, Ž. Ivanović, J. Blagojević, S. Živković, T. Popović, Zašt. Bilja 64 (2013) 189–197

E.G. Wulff, C.M. Mguni, C.N. Mortensen, C.L. Keswani, J. Hockenhull, Eur. J. Plant Pathol. 108 (2002) 317–325

S. Mishra, N.K. Arora, World J. Microbiol. Biotechnol. 28 (2012) 693–702

F.R. Spago, C.S.I. Mauro, A.G. Oliveira, J.P.O. Beranger, M.V.T. Cely, M.M. Stanganelli, A.S. Simionato, J.A.B. San Martin, C.G.T.J. Andrade, J.C.P. Mello, G. Andrade, Crop Prot. 62 (2014) 46–54

Shivalingaiah, S. Umesha, Can. J. Physiol. Pharmacol. 1 (2013) 147–153

R. Vaitkevičienė, D. Žadeikė, E. Bartkienė, V. Krunglevičiūtė, V. Baliukoniene, S. Supronienė, G. Juodeikienė, Zemdirbyste 106 (2019) 59-64

R. Trias, L. Baneras, E. Montesinos, E. Badosa, Int. Microbiol. 11 (2008) 231–236

M. Deivamani, M. Muthamilan, J. Innov. Agric. 2 (2015) 1–9

T. Veličković, Z. Rončević, J. Grahovac, A. Jokić, I. Mitrović, B. Bajić. J. Dodić, Chem. Ind. Chem. Eng. Q. 24 (2018) 399-410

S.M.P. Assis, R.L.R. Mariano, S.J. Michereff, G. Silva, E.A.A. Maranhão, Rev. Microbiol. 30 (1999) 191–195

N. Ortuño, J. A. Castillo, C. Miranda, M. Claros, X. Soto, Renew. Agr. Food Syst. 32 (2016) 366–375

G.S. Saddler, J.F. Bradbury, in Bergey's Manual® of Systematic Bacteriology, Vol. 2: The Proteobacteria, Part B: The Gammaproteobacteria, Springer-Verlag GmbH, Wien, 2005, pp. 63-122

A. Mohsin, K. Zhang, J. Hu, Salim-ur-Rehman, M. Tariq, W. Q. Zaman, I. M. Khan, Y. Zhuang, M. Guo, Carbohydr. Polym. 181 (2018) 793–800

K. Issazadeh, S.K. Rad, S. Zarrabi, M.R. Rahimibashar, Afr. J. Microbiol. Res. 6 (2012) 1615–1620

N. M. Kannan, Abhiramy, P. Rajvanshi, IJAPBC 3 (2014) 1016–1027

M. Encheva-Malinova, M. Stoyanova, H. Avramova, Y. Pavlova, B. Gocheva, I. Ivanova, P. Moncheva, Biotechnol. Biotechnol. Equip. 28 (2014) 721–727

J.F.F. Secato, D.F. Coelho, N.G.J. Rosa, L.D.L. Costa, E.B. Tambourgi, Chem. Eng. Trans. 49 (2016) 103–108

S.N. Al-Bahry, Y.M. Al-Wahaibi, A.E. Elshafie, A.S. Al-Bemani, S.J. Joshi, H.S. Al-Makhmari, H.S. Al-Sulai-mani, Int. Biodeterior. Biodegradation 81 (2013) 141–146

G.A. Płaza, E. Król, M. Pacwa-Płociniczak, Z. Piotrowska-Seget, L.R. Brigmon, Acta Sci. Pol. Hortorum Cultus 11 (2012) 169–182

E.Z. Gomaa, Braz. Arch. Biol. Technol. 56 (2013) 259–268

M. Nitschke, G.M. Pastore, Bioresour. Technol. 97 (2006) 336–341

M. Chang, S.G. Zhou, N. Lu, J.R. Ni, World J. Microbiol. Biotechnol. 24 (2008) 441–447

C. Li, K. L. Lesnik, H. Liu, Energies 6 (2013) 4739–4768

M. de Sousa, I.T. Dantas, A.K.N. Felix, H.B. de Sant'Ana, V.M.M. Melo, L.R.B. Gonçalves, Braz. Arch. Biol. Technol. 57 (2014) 295–301

Sumithra, A.V.N. Swamy, V.V. Basava Rao, IJAR 4 (2016) 2196-2200

M. Priyadharshini, R.S. Kumar, IJMTST 3 (2016) 133-138

V.K. Garlapati, U. Shankar, A. Budhiraja, Biotechnol. Rep. 9 (2016) 9–14

L. Chen, H. Shi, J. Heng, D. Wang, K. Bian, Microbiol. Res. 218 (2019) 41–48.

Downloads

Published

14.07.2021

Issue

Section

Articles

How to Cite

Xanthomonas campestris BIOCONTROL AGENT: SELECTION, MEDIUM FORMULATION AND BIOPROCESS KINETIC ANALYSIS: Original scientific paper. (2021). Chemical Industry & Chemical Engineering Quarterly, 27(2), 131-142. https://doi.org/10.2298/CICEQ200508032G

Similar Articles

31-40 of 41

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)