ELECTROCHEMICAL HARVESTING OF MICROALGAE꞉ PARAMETRIC AND COST-EFFECTIVITY COMPARATIVE INVESTIGATION

Original scientific paper

Authors

  • ATHEER M. AL-YAQOOBI Department of Chemical Engine¬ering, Collage of Engineering, University of Baghdad, Iraq
  • MUNA N. AL-RIKABEY Department of Biochemical Engineering, Al-Khwarizmi Collage of Engineering, University of Baghdad, Iraq
  • MAHMOOD K. H. AL-MASHHADANI Department of Chemical Engine¬ering, Collage of Engineering, University of Baghdad, Iraq

DOI:

https://doi.org/10.2298/CICEQ191213031A

Keywords:

electrochemical harvesting, electrocoagulation, microalgae, sacrificial electrode, cost efficiency, energy consumption

Abstract

The cost of microalgae harvesting constitutes a heavy burden on the commer­cialization of biofuel production. The present study addressed this problem through economic and parametric comparison of electrochemical harvesting using a sacrificial electrode (aluminum) and a nonsacrificial electrode (gra­phite). The harvesting efficiency, power consumption, and operation cost were collected as objective variables as a function of applied current and initial pH of the solution. The results indicated that high harvesting efficiency obtained by using aluminum anode is achieved in short electrolysis time. That harvesting efficiency can be enhanced by increasing the applied current or the electrolysis time for both electrode materials, where 98% of harvesting efficiency can be obtained. The results also demonstrated that the power consumption with the graphite anode is higher than that of aluminum. However, at 0.2 A the local cost of operation with graphite (0.036 US$/m3) is distinctly lower than that of aluminum (0.08 US$/m3). Furthermore, the harvesting efficiency reached its higher value at short electrolysis time at an initial pH of 6 for aluminum, and at an initial pH of 4 for graphite. Consequently, the power consumption of the har­vesting process could be reduced at acid- nature conditions to around 0.46 kWh/kg for aluminum and 1.12 kWh/kg for graphite.

References

S.M.A. Mobin, Energy Procedia 160 (2019) 752–760

D. Moreira, J.C.M. Pires, Bioresour. Technol. 215 (2016) 371–379

S.M.A. Mobin, F. Alam, A Review of Microalgal Biofuels, Challenges and Future Directions, in: M.M.K. Khan, A.A. Chowdhury, N.M.S. Hassan (Eds.), Appl. Thermo-Fluid Process. Energy Syst. Key Issues Recent Dev. a Sustain. Futur., Springer Singapore, Singapore, 2018, pp. 83–108

X. Lei, Y. Chen, Z. Shao, Z. Chen, Y. Li, H. Zhu, J. Zhang, W. Zheng, T. Zheng, Bioresour. Technol. 198 (2015) 922–925

S. Gao, J. Yang, J. Tian, F. Ma, G. Tu, M. Du, J. Hazard. Mater. 177 (2010) 336–343

B.G. Ryu, J. Kim, J.I. Han, K. Kim, D. Kim, B.K. Seo, C.M. Kang, J.W. Yang, Algal Res. 31 (2018) 497–505

C.G. Alfafara, K. Nakano, N. Nomura, T. Igarashi, M. Matsumura, J. Chem. Technol. Biotechnol. 77 (2002) 871–876

N. Uduman, V. Bourniquel, M.K. Danquah, A.F.A. Hoadley, Chem. Eng. J. 174 (2011) 249–257

R. Misra, A. Guldhe, P. Singh, I. Rawat, F. Bux, Chem. Eng. J. 255 (2014) 327–333

F. Baierle, D.K. John, M.P. Souza, T.R. Bjerk, M.S.A. Moraes, M. Hoeltz, A.L.B. Rohlfes, M.E. Camargo, V.A. Corbellini, R.C.S. Schneider, Chem. Eng. J. 267 (2015) 274–281

A. Alyaqoobi, J. Eng. 16 (2010) 6198–6205

M. Khemis, G. Tanguy, J.P. Leclerc, G. Valentin, F. Lapicque, Process Saf. Environ. Prot. 83 (2005) 50–57

F. Akbal, S. Camcidotless, Desalination 269 (2011) 214–222

E. Brillas, C.A. Martínez-Huitle, Appl. Catal., B 166–167 (2015) 603–643

M. Bayramoglu, M. Kobya, O.T. Can, M. Sozbir, Sep. Purif. Technol. 37 (2004) 117–125

F. Ozyonar, B. Karagozoglu, 20 (2011) 173–179 (http://www.pjoes.com/pdf/20.1/pol.j.environ.stud.vol.20.no.1.173-179.pdf)

GlobalPetrolPrices.com, (n.d.) https://www.globalpetrol-prices.com/Iraq/electricity_prices/ (accessed July 19, 2019)

P.K. Holt, G.W. Barton, M. Wark, C.A. Mitchell, Colloids Surfaces A Physicochem. Eng. Asp. 211 (2002) 233–248

I. Branyikova, G. Prochazkova, T. Potocar, Z. Jezkova, T. Branyik, Fermentation 4 (2018) 93

R. Misra, A. Guldhe, P. Singh, I. Rawat, T.A. Stenström, F. Bux, Bioresour. Technol. 176 (2015) 1–7

M.G. Kiliç, Ç. Hoşten, Ş. Demirci, J. Hazard. Mater. 171 (2009) 247–252

J. Kim, B.G. Ryu, B.K. Kim, J.I. Han, J.W. Yang, Bioresour. Technol. 111 (2012) 268–275

D. Vandamme, S.C.V. Pontes, K. Goiris, I. Foubert, L.J.J. Pinoy, K. Muylaert, Biotechnol. Bioeng. 108 (2011) 2320–2329

D. Ghernaout, C. Benblidia, F. Khemici, Desalin. Water Treat. 54 (2015) 3328–3337

M.Y.A. Mollah, R. Schennach, J.R. Parga, D.L. Cocke, J. Hazard. Mater. 84 (2001) 29–41

M. Kobya, C. Ciftci, M. Bayramoglu, M.T. Sensoy, Sep. Purif. Technol. 60 (2008) 285–291

R. Henderson, S.A. Parsons, B. Jefferson, Water Res. 42 (2008) 1827–1845

M.K. Danquah, L. Ang, N. Uduman, N. Moheimani, G.M. Forde, J. Chem. Technol. Biotechnol. 84 (2009) 1078–1083

E.M. Grima, F.G. Acie, A.R. Medina, Y. Chisti, Biotech. Adv. 20 (2003) 491–515

H. AL-Hattab M, ghaly A, J Fundam Renew. Energy. 154 (2015) 1-26

J.C. Donini, J. Kan, J. Skynnarkarczuk, T.A. Hassan, K.L. Kar, Can. J. Chem. Eng. 72 (1994) 1007

E. Demirbas, M. Kobya, Process Saf. Environ. Prot. 105 (2017) 79–90

M. Kobya, E. Gengec, E. Demirbas, Chem. Eng. Process. Process Intensif. 101 (2016) 87–100.

Downloads

Published

14.07.2021

Issue

Section

Articles

How to Cite

ELECTROCHEMICAL HARVESTING OF MICROALGAE꞉ PARAMETRIC AND COST-EFFECTIVITY COMPARATIVE INVESTIGATION: Original scientific paper. (2021). Chemical Industry & Chemical Engineering Quarterly, 27(2), 121-130. https://doi.org/10.2298/CICEQ191213031A

Similar Articles

11-20 of 70

You may also start an advanced similarity search for this article.