PHENOL REMOVAL USING PULSATION BUBBLE COLUMN WITH INVERSE FLUIDIZATION AIRLIFT LOOP REACTOR

Authors

  • ALI ABDUL RAHMAN–AL EZZI Department of Chemical Engineering, University of Technology, Baghdad, Iraq

DOI:

https://doi.org/10.2298/CICEQ200312028A

Keywords:

phenol, pulsation bubble column, inverse fluidization, stripping, oxidation, adsorption

Abstract

Phenol and phenolic compounds are omnipresent organic contaminants which are sent out to water bodies and wastewater systems produced from industrial processes, and they require specific attention due to their extraordinary feat­ures such as high toxicity, carcinogenic characteristics, and ability to accumul­ate, which affects the health of humans and the environment. In this practical study, the integrated system of a pulsation bubble column with an inverse fluidization air loop reactor was tested to remove phenol. The test platform was made and operated with a bubble column containing at its upper end an electrical solenoid valve engaged via at least two timers, and connected to the air loop reactor consisting of an outer rectangular tube and an internal draft tube by one-way valve, where the granular activated carbon is put as an adsorbent material in the annulus region between the inner and outer tube. The effects of various parameters [molar ratio of Phenol to H2O2 (1/10, 1/15 and 1/20), airflow rate (5-20 L/min), remediation time (5-60 min), initial phenol concentration (10-150 mg L-1) have been studied. Removing 90% of the contaminated phenol as a result of this study may represent a partial solution to the ecological problem.

References

M. Hairuddin, N. Mubarak, M. Khalid, E. Abdullah, R. Walvekar, R. Karri, Environ. Sci. Pollut. Res. Int. 26 (2019) 35183–35197

A. Mathur, C. Balomajumder, Bioresour. Technol. 142 (2013) 9–17

P. Xin, B. Wu, C. Wu, C. Lin, J. Hazard. Mater. 244–245 (2013) 765–772

L. Zhang, C. Zhang, Z. Cheng, Y. Yao, J. Chen, Chemosphere 90 (2013) 1340– 1347

H. El-Naas, A. Acio, E. El Telib, J. Environ. Chem. Eng., A 2 (2014) 1104–1122

Y. Huang, L. Li, Water Environ. Res. 86 (2014) 277–284

S. Kim, R .Krajmalnik-Brown, O. Kim, J. Chung, Sci. Total Environ. 497–498 (2014) 250–259

S.Stasik, Y.Wick, K. Wendt-Potthoff, Chemosphere 138 (2015) 133–139

H. Diyauddeen, A. Daud, R. Abdul Aziz, Process Saf. Environ. Prot. 89 (2011) 95–105

P. Shariati, B. Bonakdarpour, Z. Ashtiani, Bioresour. Technol. 102 (2011) 7692–7699

E. Santo, P. Vilar, S. Botelho, A. Bhatnagar, E. Kumar, A. Boaventura, Chem.Eng. J. 183 (2012) 117–123

S. Zhao, P. Wang, C. Wang, L. Langer, G. Abulikemu, X. Sun, Chem. Eng. J. 219 (2013) 419– 428

N. Lu, J. Li, X. Wang, T. Wang, Y. Wu, Plasma Chem. Plasma Process. 32 (2011) 109-121

F.Shahrezaei, Y. Mansouri, L. Zinatizadeh, A. Akhbari, Powder Technol. 221 (2012) 203– 212

O. Cooney, David, Adsorption for Wastewater Treatment, in: Adsorption. Design for. Wastewater Treatment, Lewis Publishers, Boca Raton, FL, 1999, pp. 1–8

D. Mohan, A. Sarswat, Y.S. Ok, C.U. Pittman, Bioresour. Technol. 160 (2014) 191–202

R. RaoKarri, N. Jayakumar, J. Sahu, J. Molecular Liq. 231 (2017) 249–262

R. Karri, J. Sahu, N. Jayakumar, J. Taiwan Inst. Chem. Eng. 80 (2017) 472–487

I. Ben Hariz, A. Halleb, N. Adhoum, L. Monser, Sep. Purif. Technol. 107 (2013) 150–157

S. Mizzouri, G. Shaaban, J. Hazard. Mater. 250–251 (2013) 333–344

H. Panjeshahi, in Handbook of process integration, J.J. Klemes (Ed.), Woodhead Publishing, Sawston, 2013, pp. 633–704

H. El-Naas, A. Acio, E. El Telib, J. Environ. Chem. Eng., B 2 (2014) 56–62

S. Sharma, P. Rangaiah, in Proceedings of the 24th European Symposium on Computer Aided Process Eng¬ineering, Budapest, Hungary, 2014, pp. 1531–1536

Y. Zhou, F.Gao, Y.Zhao, J. Lu, J. Saudi Chem. Soc. 18 (2014) 589–592

G. Hu, J. Li, H. Hou, J. Hazard. Mater. 283 (2015) 832–

–840

H. Srichandan, S. Singh, K. Blight, A. Pathak, J. Kim, S. Lee, W. Lee, Int. J. Miner. Process. 134 (2015) 66–73

A. Zazo, A. Casas, B. Molina, A.Quintanilla, J. Rodriguez, Environ. Sci. Technol. 41 (2007) 7164–7170

C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee, E. Taylor, A. Biswas, Curr. Pollut. Rep. (2016) 1–11

E. Neyens, A. Baeyens, J.Hazard. Mater. 98 (2003) 33-50

M. Ahmadi, B. Ramavandi, S. Sahebi, Chem. Eng. Commun. 2029 (2015) 1118-1129

M. Haroun, A. Idris, Desalination 237(2009) 357-366

F. Zareei, A. Ghoreyshi, World Appl. Sci. J. 13 (2011) 2067-2074

I. Muangthai, C. Ratanatamsakul, M. Lu, Sustain. Environ. Res. 20 (2010) 325-331

A. Al-ezzi, Sci. Int. (Lahore) 30 (2018) 673-680

M. Jovanovic, Z. Grbavcic, N. Rajic, B.Obradovic, Chem. Eng. Sci. 117 (2014) 85-92

J. Kulkarni, W. Tapre, V. Patil, B. Sawarkar, Procedia Eng. 51 (2013) 300-307

K. Balaji, S. Poongothai, Int. J. Eng. Sci. Technol. 4 (2012) 3134-3139.

Downloads

Published

25.04.2021

Issue

Section

Articles

How to Cite

PHENOL REMOVAL USING PULSATION BUBBLE COLUMN WITH INVERSE FLUIDIZATION AIRLIFT LOOP REACTOR. (2021). Chemical Industry & Chemical Engineering Quarterly, 27(1), 99-106. https://doi.org/10.2298/CICEQ200312028A

Similar Articles

11-20 of 30

You may also start an advanced similarity search for this article.