DYNAMIC OPTIMIZATION OF LOW-DENSITY POLYETHYLENE PRODUCTION IN TUBULAR REACTOR UNDER THERMAL SAFETY CONSTRAINT

Authors

  • A. AZMI School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan 14300 Nibong Tebal, Seberang Perai Selatan, Penang, Malaysia
  • S. A. SATA School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan 14300 Nibong Tebal, Seberang Perai Selatan, Penang, Malaysia
  • F. S. ROHMAN School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan 14300 Nibong Tebal, Seberang Perai Selatan, Penang, Malaysia
  • A. AZIZ School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan 14300 Nibong Tebal, Seberang Perai Selatan, Penang, Malaysia

DOI:

https://doi.org/10.2298/CICEQ190108027A

Keywords:

low-density polyethylene, tubular reactor, dynamic optimization, dynamic optimiz¬ation, thermal safety

Abstract

A commercial low-density polyethylene (LDPE) which is produced by the poly­merization process of ethylene in the presence of initiators in a long tubular reactor is the most widely used in polymer industry. The highly exothermic nature of the LDPE polymerization process and the heating-cooling prerequi­site in the tubular reactor can lead to various problems, particularly safety in terms of thermal runaway and productivity, i.e., decreasing monomer conver­sion. Therefore, model-based optimization of an industrial LDPE tubular reac­tor under thermal safety consideration is required to be implemented. A first principle model for this process is developed and validated using industrial data. Mass and energy balances have been derived from kinetics of LDPE polymerization. Thereafter, an expression of reactor temperature under critical condition is developed and incorporated in the reference model for the thermal safety study. In order to ensure the process is thermally safe and meets the desired product grade, the constrained dynamic optimization is proposed to maximize the conversion of the monomer using orthogonal collocation (OC). The dynamic optimization result shows that the maximum reaction temperature under critical condition constraint can be satisfied by optimizing the reactor jacket. Moreover, it is achieved without jeopardizing the monomer conversion and the product grade.

References

M.K. Chang, J. Ind. Eng. Chem. 27 (2015) 96-101

V.P. Haribal, Y. Chen, L. Neal, F. Li, Eng. J. 4 (2018) 714–721

LDPE EVA Market Outlook, Nexant, Inc., Asia Petrochemical Industry Conference, Japan, 2017, pp. 121-125

C.H. Chen, J.G Vermeychuk, J.A. Howell, P. Ehrlich, AIChE J. 22 (1976) 463–471

D. Muhammad, Z. Ahmad, N Aziz, IOP Conf. Ser.: Mater. Sci. Eng. 736 (2020) 042014

A. Azmi, N. Aziz, International J. Appl. Eng. Res. 11 (2016) 9906-9913

F.Z Yao, Master Thesis, Nanchang University, 2004

N. Agrawal, PhD Thesis, National University of Singa-pore, 2008

M. Asteasuain, A. Brandolin. Comput. Chem. Eng. 32 (2008) 396–408

A. Azmi, Sudibyo, S.A. Sata, N. Aziz, AIP Conference Proceedings, 2018

F. Stoessel, Thermal Safety of Chemical Processes: Risk Assessment and Process Design, Wiley-VCH, New York, 2008

M. Asteasuain, S. Pereda, M.H. Lacunza, P.E. Ugrin, A. Brandolin. Polym. Eng. Sci. 41 (2001) 711–726

J.S. Tse, Eng. J. 5 (2019) 421–433

A. Azmi, N. Aziz, Procedia Eng. 148 (2016) 1170-1176

C. Kiparissides, A. Baltsas, S. Papadopoulos, J.P. Congalidis, J.R. Richards, M.B. Kelly, Y. Ye, Ind. Eng. Chem. Res. 44 (2005) 2592–2605

D. Kim, P.D. Iedema, Chem. Eng. Sci. 59 (2004) 2039

–2052

R.C.M. Zabisky, W.M. Chan, P.E. Gloor, A.E. Hamielec, Polymer 33 (1992) 2243-2262

A. Buchelli, M.L. Call, A.L. Brown, A. Bird, S. Hearn, J. Hannon, Ind. Eng. Chem. Res. 44 (2005) 1474–1479

J.M. Coulson, J.F Richardson, J.R. Backhurst, J.H. Harker, Chemical Engineering: Fluid Flow, Heat Transfer and Mass Transfer, Vol. I, 5th ed., Butterworth-Heine¬mann, Oxford, 1996

A. Azmi, S. A. Sata, F.S. Rohman, N. Aziz, J. Phys.: Conf. Ser. 1349 (2019) 012094

H. Mavridis, C. Kiparissides, Polym. Proc. Eng. 3 (1985) 263-290

M Cizniar, Diploma Work, Slovak Technical University in Bratislava, 2005

J.E. Cuthrell, L.T. Biegler, AIChE J. 33 (1987) 1257–1270

E.S. Lopez-Saucedo, I.E. Grossmann, J.G. Segovia-Her¬nandez, S. Hernández, Chem. Eng. Res. Des 111 (2016) 83-99

D. Rodrigues, D. Bonvin, Optim. Control Appl. Methods (2019) 1–20

B.Houska, H. J. Ferreau, M. Diehl, Optim. Control Appl. Methods 32 (2011) 298–312

W. Yan, Y. Qian, W. Ma, B. Zhou, Y. Shen, F. Lin, Eng. J. (2017) 701–707

B. Srinivasan, S. Palanki, D. Bonvin, Comput. Chem. Eng. 27 (2003) 1-26

M. Vallerio, F. Logist, P.V. Erdeghem, C. Dittrich, J.V. Impe, Ind. Eng. Chem. Res. 52 (2013) 1656−1666

H.A. Zogg, "Zurich" Hazard Analysis: A Brief Introduction to the "Zurich" Method of Hazard Analysis Zurich Insur¬ance Group, Risk engineering, 1987.

Downloads

Published

25.04.2021

Issue

Section

Articles

How to Cite

DYNAMIC OPTIMIZATION OF LOW-DENSITY POLYETHYLENE PRODUCTION IN TUBULAR REACTOR UNDER THERMAL SAFETY CONSTRAINT. (2021). Chemical Industry & Chemical Engineering Quarterly, 27(1), 85-97. https://doi.org/10.2298/CICEQ190108027A

Similar Articles

81-90 of 117

You may also start an advanced similarity search for this article.