PRODUCTION OF BIOPLASTIC MATERIAL FROM ALGAL BIOMASS

Authors

  • MARJANA SIMONIČ Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
  • LIDIJA FRAS ZEMLJIČ Faculty of Mechanical Engineering, Institute for Engineering Materials and Design, University of Maribor, Maribor, Slovenia

DOI:

https://doi.org/10.2298/CICEQ191024026S

Keywords:

PLA, spirulina, calorimetry, biodegradability

Abstract

Bioplastic composite material was developed from polylactic acid used as basic polymer and microalgae. Two types of biomaterials were prepared based on the proportion of microalgae and polylactic acid. The mass ratios were set to 5:95 and 10:90. First, spirulina was chosen as initial material and then a mixed culture of microalgae community from the biogas digestate treatment. The aim of the research was to study the characteristics of materials in order to determine whether the algal biomass community could be used in the pro­duct­ion of bioplastics. It was found out that microalgae do not significantly impact the properties of the polylactic acid material. The degree of material crys­tal­linity increased, the melting temperature reduced, and the modules of losses increased.

References

N.D. Duranay, Chem. Ind. Chem. Eng. Q. 25 (2019) 239-246

H. Karan, C. Hunk, M. Grabert, M. Oey, B. Hankamer, Trends Plant Sci. 24 (2019) 237-249

F. Bilo, S. Pandini, L Sartore, L.E. Depero, G. Gargiulo, A. Bonassi, S. Federici, E. Boonetempi, J. Clean. Prod. 200 (2018) 357-368

M-A. Zeller, R. Hunt, A. Jones, S Sharma, J. Appl. Polym. Sci. 130 (2013) 3262-3275

T. Cai, S.Y. Park, Y. Li, Renewable Sustainable Energy Rev. 19 (2012) 360-369

A. Soroudim, I. Jakubowicz, Eur. Polym. J. 49 (2013) 2839-2858

X. Monnier, A. Saiter, E. Dargent, Thermochim. Acta 648 (2017) 13-22

I. Spiridon, K. Leluk, A.M. Rosmerita, R.N. Darie, Composites, B 69 (2015) 342-349

N. Lucas, C. Bienaime, C. Belloy, M. Queneudec, F. Silvestre, J.-E. Nava-Saucedo, Chemosphere 73 (2008) 429-442

S.M. Emadian, T.T. Onay, B. Demirel, J. Waste Manage. 59 (2017) 526-536

A. Przybytek, M. Sienkiewicz, J. Kucinska-Lipka, H. Janik, Ind. Crops Prod. 122 (2018) 375-383

I. Pillin, N. Montrelay, A. Bourmaud, Y. Grohens, Polym. Degrad. Stab. 93 (2008) 321-328

M. Kodal, A.A. Wis, G. Ozcok, Radiat. Phys. Chem. 153 (2018) 214-225

D. Zhang, W. Luo, Y. Li, G. Wang, G. Li, Bioresour. Technol. 250 (2018) 853-859

J. Zhao, X. Sun, M. K. Awasthi, Q. Wang, X. Ren, R. Li, H. Chen, M. Wang, T. Liu, Z. Zhang, Bioresour. Technol. 267 (2018) 688-695

W. Penkhrue, C. Khanongnuch, K. Masaki, W. Pathom-aree, W. Punyodom, S. Lumyong, World J. Microbiol. Biotechnol. 31 (2015) 1431-1442

S. Thakur, J. Chaudhary, B. Sharma, A. Verma, S. Tamulevicius, V.K. Thakur, Curr. Opin. Green Sustain. Chem. 13 (2018) 68-75.

Downloads

Published

25.04.2021

Issue

Section

Articles

How to Cite

PRODUCTION OF BIOPLASTIC MATERIAL FROM ALGAL BIOMASS. (2021). Chemical Industry & Chemical Engineering Quarterly, 27(1), 79-84. https://doi.org/10.2298/CICEQ191024026S

Similar Articles

1-10 of 17

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)