LIGHT OLEFIN PRODUCTION USING THE MIXTURE OF HZSM-5/MCM-41 AND -Al2O3 AS CATALYSTS FOR CATALYTIC PYROLYSIS OF WASTE TIRES

Main Article Content

RURU FU
ZHUANGZHANG HE
SHIKAI QIN
QINGZE JIAO
CAIHONG FENG
HANSHENG LI
YUN ZHAO

Abstract

In this paper, micro-mesoporous HZSM-5/MCM-41 zeolites were prepared by a two-step hydrothermal method using commercial HZSM-5 with two different silica/alumina ratios (38 and 50) as starting materials. The structures, morpho­logies and acidity of as-prepared zeolites were analyzed using XRD, FT-IR, SEM, N2-adsorption/desorption and NH3-TPD. The HZSM-5/MCM-41 zeolites combined the acidity of microporous HZSM-5 with the pore advantages of mesoporous MCM-41. Mesopores and microspores of 3.34 and 0.95 nm in diameter were found to be present in HZSM-5/MCM-41 zeolites. When they were used to catalyze the pyrolysis of waste tires, the selectivity of light olefins for HZSM-5/MCM-41 prepared using HZSM-5 with the silica/alumina ratio of 50 as starting materials was 21.42%, higher than 18.43% of HZSM-5/MCM-41 syn­the­sized using HZSM-5 with the silica/alumina ratio of 38. In order to further overcome the pore size constraints and mass transfer limitations of HZSM-5/MCM-41 zeolites for catalyzing pyrolysis of waste tires, macroporous
γ-Al2O3 were mixed with HZSM-5/MCM-41 and used as catalysts. The select­ivity to light olefins for the mixture of γ-Al2O3 and HZSM-5/MCM-41 prepared using HZSM-5 with the silica/alumina ratio of 50 as starting materials was 33.65%, which was obviously enhanced by the introduction of γ-Al2O3.

Article Details

How to Cite
FU, R. ., HE, Z. ., QIN, S. ., JIAO, Q. ., FENG, C. ., LI, H. ., & ZHAO, Y. . (2021). LIGHT OLEFIN PRODUCTION USING THE MIXTURE OF HZSM-5/MCM-41 AND -Al2O3 AS CATALYSTS FOR CATALYTIC PYROLYSIS OF WASTE TIRES. Chemical Industry & Chemical Engineering Quarterly, 27(1), 69–78. https://doi.org/10.2298/CICEQ200302025F
Section
Articles

References

D.N. Anh, K. Raweewan, W. Sujitra, J. Sirirat, J. Anal. Appl. Pyrolysis 86 (2009) 281-286

J.M. Lee, J.S. Lee, Energy 20 (1996) 969-976

G. Lopez, M. Olazar, M. Amutio, R. Aguado, J. Bilbao, Energy Fuels 23 (2009) 5423-5431

P.T. Williams, Waste Manage. 33 (2013) 1714-1728

A.M. Fernández, C. Barriocanal, R. Alvarez, J. Hazard. Mater. 203-204 (2012) 236-243

J.P. Falkenhagen, L. Maisonneuve, P.P. Paalanen, N. Coste, N. Malicki, B.M. Weckhuysen, Chem.Eur.J. 24 (2018) 4597-4606

S. Abbasizadeh, R. Karimzadeh, Ind. Eng. Chem. Res. 57 (2018) 7783-7794

K. Sana, P. Maria, T. Mohand, K. Besma, Z. Fethi, J Energy Resour. Technol. 139 (2016) 032203

S.S.Z. Salmasi, M.S. Abbas-Abadi, M.N. Haghighi, H. Abedini, Fuel 160 (2015) 544-548

B. Shen, C. Wu, C. Liang, B. Guo, R. Wang, J. Anal. Appl. Pyrolysis 78 (2007) 243-249

B. Shen, C. Wu, B. Guo, R. Wang, C. Liang, Appl. Catal., B 73 (2007) 150-157

G.S. Miguel, J. Aguado, D.P. Serrano, J.M. Escola, Appl. Catal., B 64 (2006) 209-219

J. Zheng, Q. Zeng, Y. Yi, Y. Wang, J. Ma, B. Qin, X. Zhang, W. Sun, R. Li, Catal. Today 168 (2011) 124-132

J. Shah, M.R. Jan, F. Mabood, Energy Convers. Manage. 50 (2009) 991-994

S. Kotrel, H.G.C. Knozinger Microporous Mesoporous Mater. 35-36 (2000) 11-20

X. Li, B. Shen, C. Xu, Appl. Catal., A 375 (2010) 222-229

C. Witpathomwong, R. Longloilert, S. Wongkasemjit, S. Jitkarnka, Energy Procedia 9 (2011) 245-251

W. Namchot, S. Jitkarnka, J. Anal. Appl. Pyrolysis 121 (2016) 297-306

Z. Li, Z. Zhong, B. Zhang, W. Wang, W. Wu, J. Anal. Appl. Pyrolysis 138 (2019) 103-113

Y. Sang, Q. Jiao, H. Li, Q. Wu, Y. Zhao, K. Sun, J. Nanopart. Res. 16 (2014) 2755

T. Fu, R. Qi, W. Wan, J. Shao, J.Z. Wen, Z. Li, ChemCatChem 9 (2017) 4212-4224

Z. Ma, T. Fu, Y. Wang, J. Shao, Q. Ma, C. Zhang, L. Cui, Z. Li, Ind. Eng. Chem. Res. 58 (2019) 2146-2158

R.A. Nadkarni, Anal. Chem. 52 (1980) 929-935

H. Li, S. He, K. Ma, Q. Wu, Q. Jiao, K. Sun, Appl. Catal., A 450 (2013) 152-159

F.G. Denardin, O.W. Perez-Lopez, Microporous Mesoporous Mater. 295 (2020) 109961

Y.F. Yeong, A.Z. Abdullah, S.B.A. Latif Ahmad, Microporous Mesoporous Mater. 123 (2009) 129-139

Y. Luo, P. Yang, J. Lin, Microporous Mesoporous Mater. 111 (2008) 194-199

K. Ding, Z. Zhong, B. Zhang, J. Wang, A. Min, R. Ruan, J. Anal. Appl. Pyrolysis 122 (2016) 55-63

Y. Gu, N. Cui, Q. Yu, C. Li, Q. Cui, Appl. Catal., A 429-430 (2012) 9-16

A.S. Al-Dughaither, H. de Lasa, Ind. Eng. Chem. Res. 53 (2014) 15303-15316

D. Ma, W. Zhang, Y. Shu, X. Liu, Y. Xu, X. Bao, Catal. Lett. 66 (2000) 155-160

Y.G.A.J. Scott Buchanan, Appl. Catal., A 134 (1996) 247-262

C. Berrueco, E. Esperanza, F.J. Mastral, J. Ceamanos, P. García-Bacaicoa, J. Anal. Appl. Pyrolysis 74 (2005) 245-253

S. Muenpol, R. Yuwapornpanit, S. Jitkarnka, Clean Technol. Environ. Policy 17 (2016) 1149–1159

M. Olazar, M. Arabiourrutia, G. López, R. Aguado, J. Bilbao, J. Anal. Appl. Pyrolysis 82 (2008) 199-204

M. Arabiourrutia, M. Olazar, R. Aguado, G.L. Pez, A. Bar¬ona, J. Bilbao, Ind. Eng. Chem. Res. 47 (2008) 7600–7609

Z. He, Q. Jiao, Z. Fang, T. Li, C. Feng, H. Li, Y. Zhao, J. Anal. Appl. Pyrolysis 129 (2018) 66-71

C. Wang, X. Tian, B. Zhao, L. Zhu, S. Li, Processes 7 (2019) 335.