THE FLOW AND MASS TRANSFER CHARACTERISTICS OF CONCENTRIC GAS-LIQUID FLOW IN AN ADVANCED STATIC MIXER

Authors

  • HUIBO MENG Engineering and Technology Research Center of Liaoning Province for Chemical Static-Mixing Reaction, School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang, P.R. China
  • ZHONGGEN LI Engineering and Technology Research Center of Liaoning Province for Chemical Static-Mixing Reaction, School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang, P.R. China
  • YANFANG YU Engineering and Technology Research Center of Liaoning Province for Chemical Static-Mixing Reaction, School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang, P.R. China
  • MENGQI HAN Engineering and Technology Research Center of Liaoning Province for Chemical Static-Mixing Reaction, School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang, P.R. China
  • SHUNING SONG School of Chemistry and Molecular Bioscience, the University of Queensland, Brisbane, Australia
  • XIUHUI JIANG Engineering and Technology Research Center of Liaoning Province for Chemical Static-Mixing Reaction, School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang, P.R. China
  • ZONGYONG WANG Engineering and Technology Research Center of Liaoning Province for Chemical Static-Mixing Reaction, School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang, P.R. China
  • JIANHUA WU Engineering and Technology Research Center of Liaoning Province for Chemical Static-Mixing Reaction, School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang, P.R. China

DOI:

https://doi.org/10.2298/CICEQ191213024M

Keywords:

static mixer, multi-helical inserts, upward gas-liquid flow, gas void fraction, local mass transfer coefficients

Abstract

The fluid dynamic and mass transfer characteristics of concentric upward gas-liquid flow were studied in an industrial static mixer with four equally spaced helical inserts (FKSM). The numerical simulations of the gas volume fraction in a Kenics mixer was in good agreement with the numerical and experimental results provided by Rabha et al. The characteristics of radial gas void fraction and local mass transfer coefficients in the FKSM were evaluated under differ­ent operating conditions. The velocity profiles of the concentric air phase accelerated by the bubble forces first became sharp and narrow until z/l = -3.27 and then slowly decreased and stabilized at z/l = -1.5 before entering the first mixing element. Some extra unimodal profile of radial gas holdup gra­du­ally generated near the rectangle cross-sections of the mixing elements. The αG gradually enlarged from r/R = 0.2 to r/R = 0.55 and then weakened from r/R = 0.65 to r/R = 0.874. The air void fractions in the bulk flow region dec­reased with the increasing initial uniform bubble diameter. The inlet effect of the first leading edge enhanced the air phase dispersion and local mass trans­fer coefficients sharply increased from 2.04 to 3.69 times of that in the inlet. The local mass transfer coefficients in each mixing group had unimodal profiles.

References

A. Ghanem, T. Lemenand, D.D. Valle, H. Peerhossaini, Chem. Eng. Res. Des. 92 (2014) 205–228

R. Rzehak, E. Krepper, Nucl. Eng. Des. 287 (2015) 108–118

K. Somnuk, N. Soysuwan, G. Prateepchaikul, Renewable Energy 131 (2019) 100–110

H.B. Meng, F. Wang, Y.F. Yu, M.Y. Song, J.H. Wu, Ind. Eng. Chem. Eng. 53 (2014) 4084–4095

H.B. Meng, X.H. Jiang, Y.F. Yu, Z.Y. Wang, J.H. Wu, Korean J. Chem. Eng. 34 (2017) 1328–1336

R.K. Thaku, Ch. Vial, K.D.P. Nigam, E.B. Nauman, G. Djelveh, Chem. Eng. Res. Des. 81 (2003) 787–826

S. Rabha, M. Schubert, F. Grugel, M. Banowski, U. Hampel, Chem. Eng. J. 262 (2015) 527–540

A. Kołodziej, J. Łojewska, M. Jaroszyński, A. Gancarczyk, P. Jodłowski, Int. J. Heat Fluid Flow 33 (2012) 101–108

A.M. Al Taweel, F. Azizi, G. Sirijeerachai, Chem. Eng. Process 72 (2013) 51–62

A.M. Al Taweel, J. Yan, F. Azizi, D. Odedra, H.G. Gomaa, Chem. Eng. Sci. 60 (2005) 6378–6390

F. Azizia, A.M. Al Taweel, Chem. Eng. Sci. 62 (2007) 7436–7445

F. Azizi, A.M. Al Taweel, Ind. Eng. Chem. Res. 54 (2015) 11635–11652

F. Azizi, K.A. Hweij, AIChE J. 63 (2017) 1390–1403

D.M. Hobbs, P.D. Swanson, F.J. Muzzio, Chem. Eng. Sci. 53 (1998) 1565–1584

Z. Jaworski, P. Pianko-Oprych, Chem. Eng. Res. Des. 80 (2002) 910–916

Z. Jaworski, H. Murasiewicz, Chem. Pap. 64 (2010) 182–192

H.B. Meng, Z.Q. Liu, Y.F. Yu, Q. Xiong, J.H. Wu, Int. J. Chem. React. Eng. 9 (2011) 1–19

E. Lobry, F. Therona, C. Gourdona, N.L. Sauzea, C. Xuereba, T. Lasuyeb, Chem. Eng. Sci. 66 (2011) 5762–

–5774

H.B. Meng, Z.Q. Liu, Y.F. Yu, J.H. Wu, Braz. J. Chem. Eng. 29 (2012) 167–182

A. Couvert, C. Sanchez, I. Charron, A. Laplanche, C. Renner, Chem. Eng. Sci. 61 (2006) 3429–3434

H. Tajima, A. Akihiro Yamasaki, F. Kiyono, Energy Fuels 18 (2004) 1451–1456

H. Tajima, A. Yamasaki, F. Kiyono, H. Teng, AIChE J. 50 (2004) 871–878

H. Tajima, A. Yamasaki, F. Kiyono, Energy Fuels 19 (2005) 2364–2370

Y.X. Liao, R. Rzehak, D. Lucas, E. Krepper, Chem. Eng. Sci. 122 (2015) 336–349

F. Zidouni, E. Krepper, R. Rzehak, S. Rabha, M. Schub¬ert, U. Hampel, Chem. Eng. Sci. 137 (2015) 476–486

F.T. Kanizawa, G. Ribatski, Int. J. Heat Fluid Flow 65 (2017) 200–209

F.T. Kanizawa, G. Ribatski, Int. J. Heat Fluid Flow 65 (2017) 210–219

J.H. Wu, Chinese Patent CN 200510045606.8 (2007)

A. Sakin, I. Karagoz, Chem. Ind. Chem. Eng. Q., 23 (2017) 483–493

B.K. Dhar, S.K. Mahapatra, S.K. Maharana, A. Sarkar, S.S. Sahoo, J. Comput. Multiphase Flows 8 (2016) 201–

–212

M.E. Garmakova, V.V. Degtyarev, N.N. Fedorova and V.A. Shlychkov, AIP Conf. Proc. 1939 (2018) 020037-1–

-020037-12

ANSYS, ANSYS Fluent Theory Guide Release 16.0, ANSYS Inc., Canonsburg, 2015, p. 570

R. Taghavi-Zenouz, M.H.A. Behbahani, Aerosp. Sci. Technol. 72 (2018) 409–417

V. Abdolkarimi, H. Ganji, Braz. J. Chem. Eng. 31 (2014) 949–957

R. Rzehak, E. Krepper, C. Lifante, Nucl. Eng. Des. 253 (2012) 41–49

E. Krepper, D. Lucas, H.M. Prasser, Nucl. Eng. Des. 235 (2005) 597–611

M. Ishii, N. Zuber, AIChE J. 25 (1979) 843–855

R. Rzehak, M. Krauß, P. Kováts, K. Zähringer, Int. J. Multiphase Flow 89 (2017) 299–312

D.A. Drew, R.T. Lahey, In particulate two-phase flow, Butterworth-Heinemann, Oxford, 1993, pp. 509–506

A. Tomiyama, Multiphase Sci. Technol. 10 (1998) 369–

–405

T. Frank, J. Shi, A.D. Burns, Validation of Eulerian multi¬phase flow models for nuclear safety applications, in Pro¬ceeding of the 3rd International Symposium on Two-

-Phase Flow Modelling and Experimentation, Pisa, Italy, 2004, pp. 1–9

B. Vadlakonda, N. Mangadoddy, Sep. Purif. Technol. 184 (2017) 168–187

D. Lucas, E. Krepper, H. M. Prasser, Int. J. Therm. Sci. 40 (2001) 217–225

A. Tomiyama, A. Sou, I. Zun, N. Kanami, T. Sakaguchi, Adv. Multiphase Flow (1995) 3–15

S. Hosokawa, A. Tomiyama, S. Misaki, T. Hamada, Late¬ral migration of single bubbles due to the presence of wall, in Proceedings of ASME FEDSM'02, Montreal, Canada, 2002, pp. 855–860

Y.F. Yu, H.Y. Wang, M.Y. Song, H.B. Meng, Z.Y. Wang, J.H. Wu, Appl. Therm. Eng. 94 (2016) 282–295

ANSYS, ANSYS Fluent Users Guide Release 16.0, ANSYS Inc., Canonsburg, 2015, p. 1429

FLUENT, Gambit 2.4 Users Guide, FLUENT Inc., Canonsburg, 2007, p. 3-91

M. Tobajas, E. Garcia-Calvo, M.H. Siegel, S.E. Apitz, Chem. Eng. Sci. 54 (1999) 5347–5354.

Published

25.04.2021

Issue

Section

Articles

How to Cite

THE FLOW AND MASS TRANSFER CHARACTERISTICS OF CONCENTRIC GAS-LIQUID FLOW IN AN ADVANCED STATIC MIXER. (2021). Chemical Industry & Chemical Engineering Quarterly, 27(1), 57-68. https://doi.org/10.2298/CICEQ191213024M

Similar Articles

71-77 of 77

You may also start an advanced similarity search for this article.