THE FLOW AND MASS TRANSFER CHARACTERISTICS OF CONCENTRIC GAS-LIQUID FLOW IN AN ADVANCED STATIC MIXER
DOI:
https://doi.org/10.2298/CICEQ191213024MKeywords:
static mixer, multi-helical inserts, upward gas-liquid flow, gas void fraction, local mass transfer coefficientsAbstract
The fluid dynamic and mass transfer characteristics of concentric upward gas-liquid flow were studied in an industrial static mixer with four equally spaced helical inserts (FKSM). The numerical simulations of the gas volume fraction in a Kenics mixer was in good agreement with the numerical and experimental results provided by Rabha et al. The characteristics of radial gas void fraction and local mass transfer coefficients in the FKSM were evaluated under different operating conditions. The velocity profiles of the concentric air phase accelerated by the bubble forces first became sharp and narrow until z/l = -3.27 and then slowly decreased and stabilized at z/l = -1.5 before entering the first mixing element. Some extra unimodal profile of radial gas holdup gradually generated near the rectangle cross-sections of the mixing elements. The αG gradually enlarged from r/R = 0.2 to r/R = 0.55 and then weakened from r/R = 0.65 to r/R = 0.874. The air void fractions in the bulk flow region decreased with the increasing initial uniform bubble diameter. The inlet effect of the first leading edge enhanced the air phase dispersion and local mass transfer coefficients sharply increased from 2.04 to 3.69 times of that in the inlet. The local mass transfer coefficients in each mixing group had unimodal profiles.
References
A. Ghanem, T. Lemenand, D.D. Valle, H. Peerhossaini, Chem. Eng. Res. Des. 92 (2014) 205–228
R. Rzehak, E. Krepper, Nucl. Eng. Des. 287 (2015) 108–118
K. Somnuk, N. Soysuwan, G. Prateepchaikul, Renewable Energy 131 (2019) 100–110
H.B. Meng, F. Wang, Y.F. Yu, M.Y. Song, J.H. Wu, Ind. Eng. Chem. Eng. 53 (2014) 4084–4095
H.B. Meng, X.H. Jiang, Y.F. Yu, Z.Y. Wang, J.H. Wu, Korean J. Chem. Eng. 34 (2017) 1328–1336
R.K. Thaku, Ch. Vial, K.D.P. Nigam, E.B. Nauman, G. Djelveh, Chem. Eng. Res. Des. 81 (2003) 787–826
S. Rabha, M. Schubert, F. Grugel, M. Banowski, U. Hampel, Chem. Eng. J. 262 (2015) 527–540
A. Kołodziej, J. Łojewska, M. Jaroszyński, A. Gancarczyk, P. Jodłowski, Int. J. Heat Fluid Flow 33 (2012) 101–108
A.M. Al Taweel, F. Azizi, G. Sirijeerachai, Chem. Eng. Process 72 (2013) 51–62
A.M. Al Taweel, J. Yan, F. Azizi, D. Odedra, H.G. Gomaa, Chem. Eng. Sci. 60 (2005) 6378–6390
F. Azizia, A.M. Al Taweel, Chem. Eng. Sci. 62 (2007) 7436–7445
F. Azizi, A.M. Al Taweel, Ind. Eng. Chem. Res. 54 (2015) 11635–11652
F. Azizi, K.A. Hweij, AIChE J. 63 (2017) 1390–1403
D.M. Hobbs, P.D. Swanson, F.J. Muzzio, Chem. Eng. Sci. 53 (1998) 1565–1584
Z. Jaworski, P. Pianko-Oprych, Chem. Eng. Res. Des. 80 (2002) 910–916
Z. Jaworski, H. Murasiewicz, Chem. Pap. 64 (2010) 182–192
H.B. Meng, Z.Q. Liu, Y.F. Yu, Q. Xiong, J.H. Wu, Int. J. Chem. React. Eng. 9 (2011) 1–19
E. Lobry, F. Therona, C. Gourdona, N.L. Sauzea, C. Xuereba, T. Lasuyeb, Chem. Eng. Sci. 66 (2011) 5762–
–5774
H.B. Meng, Z.Q. Liu, Y.F. Yu, J.H. Wu, Braz. J. Chem. Eng. 29 (2012) 167–182
A. Couvert, C. Sanchez, I. Charron, A. Laplanche, C. Renner, Chem. Eng. Sci. 61 (2006) 3429–3434
H. Tajima, A. Akihiro Yamasaki, F. Kiyono, Energy Fuels 18 (2004) 1451–1456
H. Tajima, A. Yamasaki, F. Kiyono, H. Teng, AIChE J. 50 (2004) 871–878
H. Tajima, A. Yamasaki, F. Kiyono, Energy Fuels 19 (2005) 2364–2370
Y.X. Liao, R. Rzehak, D. Lucas, E. Krepper, Chem. Eng. Sci. 122 (2015) 336–349
F. Zidouni, E. Krepper, R. Rzehak, S. Rabha, M. Schub¬ert, U. Hampel, Chem. Eng. Sci. 137 (2015) 476–486
F.T. Kanizawa, G. Ribatski, Int. J. Heat Fluid Flow 65 (2017) 200–209
F.T. Kanizawa, G. Ribatski, Int. J. Heat Fluid Flow 65 (2017) 210–219
J.H. Wu, Chinese Patent CN 200510045606.8 (2007)
A. Sakin, I. Karagoz, Chem. Ind. Chem. Eng. Q., 23 (2017) 483–493
B.K. Dhar, S.K. Mahapatra, S.K. Maharana, A. Sarkar, S.S. Sahoo, J. Comput. Multiphase Flows 8 (2016) 201–
–212
M.E. Garmakova, V.V. Degtyarev, N.N. Fedorova and V.A. Shlychkov, AIP Conf. Proc. 1939 (2018) 020037-1–
-020037-12
ANSYS, ANSYS Fluent Theory Guide Release 16.0, ANSYS Inc., Canonsburg, 2015, p. 570
R. Taghavi-Zenouz, M.H.A. Behbahani, Aerosp. Sci. Technol. 72 (2018) 409–417
V. Abdolkarimi, H. Ganji, Braz. J. Chem. Eng. 31 (2014) 949–957
R. Rzehak, E. Krepper, C. Lifante, Nucl. Eng. Des. 253 (2012) 41–49
E. Krepper, D. Lucas, H.M. Prasser, Nucl. Eng. Des. 235 (2005) 597–611
M. Ishii, N. Zuber, AIChE J. 25 (1979) 843–855
R. Rzehak, M. Krauß, P. Kováts, K. Zähringer, Int. J. Multiphase Flow 89 (2017) 299–312
D.A. Drew, R.T. Lahey, In particulate two-phase flow, Butterworth-Heinemann, Oxford, 1993, pp. 509–506
A. Tomiyama, Multiphase Sci. Technol. 10 (1998) 369–
–405
T. Frank, J. Shi, A.D. Burns, Validation of Eulerian multi¬phase flow models for nuclear safety applications, in Pro¬ceeding of the 3rd International Symposium on Two-
-Phase Flow Modelling and Experimentation, Pisa, Italy, 2004, pp. 1–9
B. Vadlakonda, N. Mangadoddy, Sep. Purif. Technol. 184 (2017) 168–187
D. Lucas, E. Krepper, H. M. Prasser, Int. J. Therm. Sci. 40 (2001) 217–225
A. Tomiyama, A. Sou, I. Zun, N. Kanami, T. Sakaguchi, Adv. Multiphase Flow (1995) 3–15
S. Hosokawa, A. Tomiyama, S. Misaki, T. Hamada, Late¬ral migration of single bubbles due to the presence of wall, in Proceedings of ASME FEDSM'02, Montreal, Canada, 2002, pp. 855–860
Y.F. Yu, H.Y. Wang, M.Y. Song, H.B. Meng, Z.Y. Wang, J.H. Wu, Appl. Therm. Eng. 94 (2016) 282–295
ANSYS, ANSYS Fluent Users Guide Release 16.0, ANSYS Inc., Canonsburg, 2015, p. 1429
FLUENT, Gambit 2.4 Users Guide, FLUENT Inc., Canonsburg, 2007, p. 3-91
M. Tobajas, E. Garcia-Calvo, M.H. Siegel, S.E. Apitz, Chem. Eng. Sci. 54 (1999) 5347–5354.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.