THE FLOW AND MASS TRANSFER CHARACTERISTICS OF CONCENTRIC GAS-LIQUID FLOW IN AN ADVANCED STATIC MIXER

Main Article Content

HUIBO MENG
ZHONGGEN LI
YANFANG YU
MENGQI HAN
SHUNING SONG
XIUHUI JIANG
ZONGYONG WANG
JIANHUA WU

Abstract

The fluid dynamic and mass transfer characteristics of concentric upward gas-liquid flow were studied in an industrial static mixer with four equally spaced helical inserts (FKSM). The numerical simulations of the gas volume fraction in a Kenics mixer was in good agreement with the numerical and experimental results provided by Rabha et al. The characteristics of radial gas void fraction and local mass transfer coefficients in the FKSM were evaluated under differ­ent operating conditions. The velocity profiles of the concentric air phase accelerated by the bubble forces first became sharp and narrow until z/l = -3.27 and then slowly decreased and stabilized at z/l = -1.5 before entering the first mixing element. Some extra unimodal profile of radial gas holdup gra­du­ally generated near the rectangle cross-sections of the mixing elements. The αG gradually enlarged from r/R = 0.2 to r/R = 0.55 and then weakened from r/R = 0.65 to r/R = 0.874. The air void fractions in the bulk flow region dec­reased with the increasing initial uniform bubble diameter. The inlet effect of the first leading edge enhanced the air phase dispersion and local mass trans­fer coefficients sharply increased from 2.04 to 3.69 times of that in the inlet. The local mass transfer coefficients in each mixing group had unimodal profiles.

Article Details

How to Cite
MENG, H. ., LI, Z. ., YU, Y. ., HAN, M. ., SONG, S. ., JIANG, X. ., WANG, Z. ., & WU, J. . (2021). THE FLOW AND MASS TRANSFER CHARACTERISTICS OF CONCENTRIC GAS-LIQUID FLOW IN AN ADVANCED STATIC MIXER. Chemical Industry & Chemical Engineering Quarterly, 27(1), 57–68. https://doi.org/10.2298/CICEQ191213024M
Section
Articles

References

A. Ghanem, T. Lemenand, D.D. Valle, H. Peerhossaini, Chem. Eng. Res. Des. 92 (2014) 205–228

R. Rzehak, E. Krepper, Nucl. Eng. Des. 287 (2015) 108–118

K. Somnuk, N. Soysuwan, G. Prateepchaikul, Renewable Energy 131 (2019) 100–110

H.B. Meng, F. Wang, Y.F. Yu, M.Y. Song, J.H. Wu, Ind. Eng. Chem. Eng. 53 (2014) 4084–4095

H.B. Meng, X.H. Jiang, Y.F. Yu, Z.Y. Wang, J.H. Wu, Korean J. Chem. Eng. 34 (2017) 1328–1336

R.K. Thaku, Ch. Vial, K.D.P. Nigam, E.B. Nauman, G. Djelveh, Chem. Eng. Res. Des. 81 (2003) 787–826

S. Rabha, M. Schubert, F. Grugel, M. Banowski, U. Hampel, Chem. Eng. J. 262 (2015) 527–540

A. Kołodziej, J. Łojewska, M. Jaroszyński, A. Gancarczyk, P. Jodłowski, Int. J. Heat Fluid Flow 33 (2012) 101–108

A.M. Al Taweel, F. Azizi, G. Sirijeerachai, Chem. Eng. Process 72 (2013) 51–62

A.M. Al Taweel, J. Yan, F. Azizi, D. Odedra, H.G. Gomaa, Chem. Eng. Sci. 60 (2005) 6378–6390

F. Azizia, A.M. Al Taweel, Chem. Eng. Sci. 62 (2007) 7436–7445

F. Azizi, A.M. Al Taweel, Ind. Eng. Chem. Res. 54 (2015) 11635–11652

F. Azizi, K.A. Hweij, AIChE J. 63 (2017) 1390–1403

D.M. Hobbs, P.D. Swanson, F.J. Muzzio, Chem. Eng. Sci. 53 (1998) 1565–1584

Z. Jaworski, P. Pianko-Oprych, Chem. Eng. Res. Des. 80 (2002) 910–916

Z. Jaworski, H. Murasiewicz, Chem. Pap. 64 (2010) 182–192

H.B. Meng, Z.Q. Liu, Y.F. Yu, Q. Xiong, J.H. Wu, Int. J. Chem. React. Eng. 9 (2011) 1–19

E. Lobry, F. Therona, C. Gourdona, N.L. Sauzea, C. Xuereba, T. Lasuyeb, Chem. Eng. Sci. 66 (2011) 5762–

–5774

H.B. Meng, Z.Q. Liu, Y.F. Yu, J.H. Wu, Braz. J. Chem. Eng. 29 (2012) 167–182

A. Couvert, C. Sanchez, I. Charron, A. Laplanche, C. Renner, Chem. Eng. Sci. 61 (2006) 3429–3434

H. Tajima, A. Akihiro Yamasaki, F. Kiyono, Energy Fuels 18 (2004) 1451–1456

H. Tajima, A. Yamasaki, F. Kiyono, H. Teng, AIChE J. 50 (2004) 871–878

H. Tajima, A. Yamasaki, F. Kiyono, Energy Fuels 19 (2005) 2364–2370

Y.X. Liao, R. Rzehak, D. Lucas, E. Krepper, Chem. Eng. Sci. 122 (2015) 336–349

F. Zidouni, E. Krepper, R. Rzehak, S. Rabha, M. Schub¬ert, U. Hampel, Chem. Eng. Sci. 137 (2015) 476–486

F.T. Kanizawa, G. Ribatski, Int. J. Heat Fluid Flow 65 (2017) 200–209

F.T. Kanizawa, G. Ribatski, Int. J. Heat Fluid Flow 65 (2017) 210–219

J.H. Wu, Chinese Patent CN 200510045606.8 (2007)

A. Sakin, I. Karagoz, Chem. Ind. Chem. Eng. Q., 23 (2017) 483–493

B.K. Dhar, S.K. Mahapatra, S.K. Maharana, A. Sarkar, S.S. Sahoo, J. Comput. Multiphase Flows 8 (2016) 201–

–212

M.E. Garmakova, V.V. Degtyarev, N.N. Fedorova and V.A. Shlychkov, AIP Conf. Proc. 1939 (2018) 020037-1–

-020037-12

ANSYS, ANSYS Fluent Theory Guide Release 16.0, ANSYS Inc., Canonsburg, 2015, p. 570

R. Taghavi-Zenouz, M.H.A. Behbahani, Aerosp. Sci. Technol. 72 (2018) 409–417

V. Abdolkarimi, H. Ganji, Braz. J. Chem. Eng. 31 (2014) 949–957

R. Rzehak, E. Krepper, C. Lifante, Nucl. Eng. Des. 253 (2012) 41–49

E. Krepper, D. Lucas, H.M. Prasser, Nucl. Eng. Des. 235 (2005) 597–611

M. Ishii, N. Zuber, AIChE J. 25 (1979) 843–855

R. Rzehak, M. Krauß, P. Kováts, K. Zähringer, Int. J. Multiphase Flow 89 (2017) 299–312

D.A. Drew, R.T. Lahey, In particulate two-phase flow, Butterworth-Heinemann, Oxford, 1993, pp. 509–506

A. Tomiyama, Multiphase Sci. Technol. 10 (1998) 369–

–405

T. Frank, J. Shi, A.D. Burns, Validation of Eulerian multi¬phase flow models for nuclear safety applications, in Pro¬ceeding of the 3rd International Symposium on Two-

-Phase Flow Modelling and Experimentation, Pisa, Italy, 2004, pp. 1–9

B. Vadlakonda, N. Mangadoddy, Sep. Purif. Technol. 184 (2017) 168–187

D. Lucas, E. Krepper, H. M. Prasser, Int. J. Therm. Sci. 40 (2001) 217–225

A. Tomiyama, A. Sou, I. Zun, N. Kanami, T. Sakaguchi, Adv. Multiphase Flow (1995) 3–15

S. Hosokawa, A. Tomiyama, S. Misaki, T. Hamada, Late¬ral migration of single bubbles due to the presence of wall, in Proceedings of ASME FEDSM'02, Montreal, Canada, 2002, pp. 855–860

Y.F. Yu, H.Y. Wang, M.Y. Song, H.B. Meng, Z.Y. Wang, J.H. Wu, Appl. Therm. Eng. 94 (2016) 282–295

ANSYS, ANSYS Fluent Users Guide Release 16.0, ANSYS Inc., Canonsburg, 2015, p. 1429

FLUENT, Gambit 2.4 Users Guide, FLUENT Inc., Canonsburg, 2007, p. 3-91

M. Tobajas, E. Garcia-Calvo, M.H. Siegel, S.E. Apitz, Chem. Eng. Sci. 54 (1999) 5347–5354.