Effect of hot air and hot air assisted microwave drying on drying kinetics and quality of red and white pitaya slices
Original scientific paper
DOI:
https://doi.org/10.2298/CICEQ241107007SKeywords:
Pitaya, drying, effective diffusion, mathematical modelling, microstructureAbstract
In this study, mathematical modelling, drying kinetics, rehydration ratio (RR), shrinkage ratio (SR), color change (∆E), total phenolic content (TPC), antioxidant activity (AA) and microstructural examination of red and white pitaya fruits dried by hot air drying (HAD) and hot air assisted microwave drying (HA-MWD) methods were conducted. In the HAD and HA-MWD methods, the effective diffusion coefficient (Deff) increased as the drying time shortened. While the Page model provides the best fit to HA-MWD curves, HAD curves are also appropriately defined by the Parabolic Model. The RR value was found to be higher in the HA-MWD method. TPC values of fresh red and white pitaya fruits were calculated as 389.71±0.80 and 310.11±0.42 mg GAE 100 g-1 DM, respectively. The highest TPC value in HA drying was determined as 251.35±0.35 mg GAE 100 g-1 DM at 70 °C. In the HA-MWD method, TPC and AA decreased due to the increase in microwave power. In SEM monitoring, it was observed that crack and pore sizes increased with the temperature increase in HAD for both fruit types. The increase in microwave power caused more damage to the structure in the HA-MWD method.
References
1. Y. Jiang, W. Yang, J. Taiwan Soc. Hort. Sci. 61(2) (2015) 69-77. https://www.cabidigitallibrary.org/doi/full/10.5555/20153443495
2. N. Sengkhamparn, N. Chanshotikul, C. Assawajitpukdee, T. Khamjae, Int. Food Res. J. 20(4) (2013) 1595-1600. http://ifrj.upm.edu.my/20%20(04)%202013/12%20IFRJ%2020%20(04)%202013%20Nopaporn%20(484).pdf
3. E. Barcelon, L. Carreon, J. Guillermo, E. Jacob, S. Jocson, J.G. Panopio, S. Rosalinas, Aust. J. Basic Appl. Sci. 9(2) (2015) 18-21. https://www.ajbasweb.com/old/ajbas/2015/February/18-21.pdf
4. U. Metin, A. Gezici, Osmaniye Korkut Ata Univ. Fen Bilimleri Enst. Derg. 4(2) (2021) 149-157. https://doi.org/10.47495/okufbed.894470
5. W. Liaotrakoon, N. De Clercq, V. Van Hoed, D. Van de Walle, B. Lewille, K. Dewettinck, Food Bioprocess Technol. 6 (2013) 416-430. https://doi.org/10.1007/s11947-011-0722-4
6. H. Jiang, W. Zhang, X. Li, C. Shu, W. Jiang, J. Cao, Trends Food Sci. Technol. 116 (2021) 199-217. https://doi.org/10.1016/j.tifs.2021.06.040
7. E.J. Bassey, J.H. Cheng, D.W. Sun, Food Chem. 375 (2022) 131886. https://doi.org/10.1016/j.foodchem.2021.131886
8. G.V.S. Raj, K.K. Dash, Food Sci. Biotechnol. 31(5) (2022) 549-560. https://doi.org/10.1007/s10068-022-01057-4
9. C. Talens, S. Alvarez-Sabatel, Y. Rios, R. Rodriguez, Innov. Food Sci. Emerg. Technol. 44 (2017) 83-88. https://doi.org/10.1016/j.ifset.2017.07.011
10. J.R.D.J. Junqueira, J.L.G. Corrêa, D.B. Ernesto, J. Food Process. Preserv. 41(6) (2017) e13250. https://doi.org/10.1111/jfpp.13250
11. W.A.M. McMinn, J. Food Eng. 72 (2006) 113-123. https://doi.org/10.1016/J.JFOODENG.2004.11.025
12. N. Kutlu, A. İşci, Ö.Ş. Demirkol, Gıda 40(1) (2015) 39-46. https://doi.org/10.15237/gida.GD14031
13. F.B. Tepe, T.K. Tepe, A. Ekinci, Assoc. Chem. Eng. 28(2) (2022) 151-159. https://doi.org/10.2298/CICEQ210126026T
14. J. Crank, The mathematics of diffusion, Clarendon Press, Oxford, (1975). https://www-eng.lbl.gov/~shuman/NEXT/MATERIALS&COMPONENTS/Xe_damage/Crank-The-Mathematics-of-Diffusion.pdf
15. E. Demiray, A. Seker, Y. Tulek, Heat Mass. Transf. 53(5) (2017) 1817-1827. https://doi.org/10.1007/s00231-016-1943-x
16. T.K. Tepe, Biomass Convers. Biorefin. 14 (2024) 13513-13531. https://doi.org/10.1007/s13399-024-05562-w
17. V.L. Singleton, J.A. Rossi, Am. J. Enol. Vitic. 16 (1965) 144-158. http://doi.org/10.5344/ajev.1965.16.3.144
18. K. Thaipong, U. Boonprakob, K. Crosby, L. CisnerosZevallos, D.H. Byrne, J. Food Compos. Anal. 19(6-7) (2006) 669-675. https://doi.org/10.1016/j.jfca.2006.01.003
19. Y. Tian, Y. Zhao, J. Huang, H. Zeng, Food Chem. 197 (2016) 714-722. https://doi.org/10.1016/j.foodchem.2015.11.029
20. N. Çetin, S. Günaydın, K. Karaman, C. Sağlam, Curr. Trends Nat. Sci. 11(21) (2022) 79-87. https://doi.org/10.47068/ctns.2022.v11i21.008
21. N.F.M Nordin, I. Puspasari, S.M. Tasirin, W.R.W. Daud, Y. Gariépy, M.Z.M. Talib, Iran. J. Energy Environ. 5(3) (2014) 313-322. https://doi.org/10.5829/idosi.ijee.2014.05.03.11
22. A. Ayala-Aponte, L. Serna-Cock, J. Libreros-Triana, C. Prieto, K. Di Scala, DYNA 81 (2014) 145-151 http://doi.org/10.15446/dyna.v81n188.41321
23. M.M. Heydari, T. Najib, O. Baik, K. Tu, V. Meda, Curr. Res. Food Sci. 5 (2021) 73-83. https://doi.org/10.1016/j.crfs.2021.12.008
24. M. Sarobol, P. Sarobol, S. Teeta, W. Pharanat, J. Phys.: Conf. Ser. 1144(1) (2018) 012062. https://doi.org/10.1088/1742-6596/1144/1/012062
25. I.M.R. Ataides, D.E.C. De Oliveria, W.N.F. Junior, O. Resende, W.D. Quequeto, V.P. Romani, Food Sci. Technol. 43 (2023) 1-8. https://doi.org/10.5327/fst.26323
26. F.S.D. Santos, R.M. de Figueirêdo, A.J.D.M. Queiroz, D.D.C. Santos, Rev. Bras. Eng. Agric. Ambiental 21 (2017) 872-877. https://doi.org/10.1590/1807-1929/agriambi.v21n12p872-877
27. Z. Zhang, L. Han, T. Jin, Open Phys. 20(1) (2022) 1162-1175. https://doi.org/10.1515/phys-2022-0206
28. D. Wang, Y. Wang, R. Pandiselvam, D. Su, H. Xu, Food Bioproc. Tech. (2024) 1-19. https://doi.org/10.1007/s11947-024-03402-3
29. Y. Yu, Y. Chen, Y. Wang, X. Sun, Y. Guo, D. Su, H. Xu, Innov. Food Sci. Emerg. Technol. 97 (2024) 103824. https://doi.org/10.1016/j.ifset.2024.103824
30. E. Horuz, M. Maskan, J. Food Sci. Technol. 52 (2015) 285-293. https://doi.org/10.1007/s13197-013-1032-9
31. İ. Doymaz, Chem. Eng. Commun. 203(5) (2016) 599-608. https://doi.org/10.1080/00986445.2015.1056299
32. Q. Wang, S. Li, X. Han, Y. Ni, D. Zhao, J. Hao, Food Sci. Technol. 107 (2019) 236-242. https://doi.org/10.1016/j.lwt.2019.03.020
33. J.Y. Yi, J. Lyu, J.F. Bi, L.Y. Zhou, M. Zhou, J. Food Process Preserv. 41(6) (2017) e13300. https://doi.org/10.1111/jfpp.13300
34. N. Aghilinategh, S. Rafiee, A. Gholikhani, S. Hosseinpur, M. Omid, S.S. Mohtasebi, N. Maleki, Food Sci. Nutr. 3(6) (2015) 519-526. https://doi.org/10.1002/fsn3.241
35. S.H. Miraei Ashtiani, B. Sturm, A. Nasirahmadi, Heat Mass Transfer 54 (2018) 915-927. https://doi.org/10.1007/s00231-017-2187-0
36. H. Dadhaneeya, R.K. Kesavan, B.S. Inbaraj, M. Sharma, S. Kamma, P.K. Nayak, K. Sridhar, Foods 12(7) (2023) 1387. https://doi.org/10.3390/foods12071387
37. M. Angonese, G.E. Motta, N.S. de Farias, L. Molognoni, H. Daguer, P. Brugnerotto, A.C.O. Costa, C.M.O. Müller, Food Sci. Technol. 149 (2021) 111924. https://doi.org/10.1016/j.lwt.2021.111924
38. S. Sahin, E. Elhussein, M. Bilgin, J.M. Lorenzo, F.J. Barba, J. Food Process Preserv. 42(5) (2018) e13604. https://doi.org/10.1111/jfpp.13604
39. N.A. Al-Mekhlafi, A. Mediani, N.H. Ismail, F. Abas, T. Dymerski, M. Lubinska-Szczygeł, S. Vearasilp, S. Gorinstein, Microchem. J. 160 (2021) 105687. https://doi.org/10.1016/j.microc.2020.105687
40. W. Liaotrakoon, Doctoral Thesis, Ghent University (2013). https://biblio.ugent.be/publication/4093845
41. K.H. Lee, T.Y. Wu, L.F. Siow, Int J Food Sci. Technol. 48(11) (2013) 2391-2399. https://doi.org/10.1111/ijfs.12230
42. M. Ganesapillai, I. Regupathi, T. Murugesan, Chem. Prod. Process Model. 6(1) (2011). https://doi.org/10.2202/1934-2659.1479
43. N. Izli, E. Isik, Int. J. Food Prop. 18(2) (2015) 241-249. https://doi.org/10.1080/10942912.2013.829492
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Pınar Şengün, Çetin Kadakal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
How to Cite
Funding data
-
Pamukkale Üniversitesi
Grant numbers 2021FEBE060 -
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu
Grant numbers YOK 100-2000