Intensified microwave-assisted hydrodistillation produces trans-anethole-rich fennel (Foeniculum vulgare Mill.) fruit essential oil

Original scientific paper

Authors

  • Dušica P Ilić University of Niš, Faculty of Technology, Bulevar Oslobođenja 124, 16000 Leskovac, Serbia
  • Dragan Z. Troter University of Niš, Faculty of Technology, Bulevar Oslobođenja 124, 16000 Leskovac, Serbia
  • Jelena S. Stanojević University of Niš, Faculty of Technology, Bulevar Oslobođenja 124, 16000 Leskovac, Serbia
  • Dragan J. Cvetković University of Niš, Faculty of Technology, Bulevar Oslobođenja 124, 16000 Leskovac, Serbia
  • Ivan S. Ristić University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia

DOI:

https://doi.org/10.2298/CICEQ240807004I

Keywords:

Antimicrobial activity, essential oil, fennel fruit, Foeniculi aetheroleum, grinding, microwave-assisted hydrodistillation

Abstract

Fennel fruit (Foeniculim vulgare Mill.) essential oil (FFEO) was isolated from disintegrated plant material by intensified microwave-assisted hydrodistillation approach (MWHD). Isolated FFEO, rich in trans-anethole and low in estragol, was obtained in 30 % higher yield after only 10 min compared to FFEOs isolated via traditional hydrodistillation (HD). Besides significant differences in the chemical composition, the MWHD-obtained FFEO demonstrated superior antibacterial activity, while its anticandidal activity remained unchanged and identical to HD-obtained FFEOs. MWHD technique also required almost 18 times lesser electricity consumption and emitted less CO2 than the conventional HD, suggesting this approach more viable for FFEO production on an industrial level. According to these results, MWHD-obtained FFEO has the potential to be used in food industry and packaging, for the production of nutraceuticals, biopharmaceuticals, bioherbicides and cosmetics. 

References

[1] F. Chen, Y. Guo, J. Kang, X. Yang, Z. Zhao, S. Liu, Y. Ma, W. Gao, D. Luo, Ind. Crops Prod. 144 (2020) 112052. https://doi.org/10.1016/j.indcrop.2019.112052.

[2] M. Akhbari, R. Kord, S.J. Nodooshan, S. Hamedi, Nat. Prod. Res. 33(11) (2019) 1629–1632. https://doi.org/10.1080/14786419.2017.1423310.

[3] H. Benmoussa, A. Farhat, M. Romdhane, J. Bouajila, Arabian J. Chem. 12(8) (2019) 3863–3870. https://doi.org/10.1016/j.arabjc.2016.02.010.

[4] H. Boudraa, N. Kadri, L. Mouni, K. Madani, J. Appl. Res. Med. Aromat. Plants 23 (2021) 100307. https://doi.org/10.1016/j.jarmap.2021.100307.

[5] F.M. Hammouda, M.A. Saleh, N.S. Abdel-Azim, K.A. Shams, S.I. Ismail, A.A. Shahat, I.A. Saleh, Afr. J. Tradit., Complementary Altern. Med. 11(2) (2014) 277–279. http://doi.org/10.4314/ajtcam.v11i2.8.

[6] M.M. Khaleil, M.M. Alnoman, E.S.A. Elrazik, H. Zagloul, A.M.A. Khalil, Biology 10(8) (2021) 696. https://doi.org/10.3390/biology10080696.

[7] I. Telci, I. Demirtas, A. Sahin, Ind. Crops Prod. 30(1) (2009) 126–130. https://doi.org/10.1016/j.indcrop.2009.02.010.

[8] A. Ghasemian, A.H. Al-Marzoqi, S.K.S. Mostafavi, Y.K. Alghanimi, M. Teimouri, J. Gastrointest. Cancer 51(1) (2020) 260–266. https://doi.org/10.1007/s12029-019-00241-w.

[9] D.P. Ilić, L.P. Stanojević, D.Z. Troter, J.S. Stanojević, B.R. Danilović, V.D. Nikolić, L.B. Nikolić, Ind. Crops Prod. 142 (2019) 111854. https://doi.org/10.1016/j.indcrop.2019.111854 .

[10] M. Khazaei, D. Dastan, A. Ebadi, Food Biosci. 41 (2021) 100972. https://doi.org/10.1016/j.fbio.2021.100972.

[11] P. Kaur, S. Gupta, K. Kaur, N. Kaur, R. Kumar, M.S. Bhullar, Ind. Crops Prod. 168 (2021) 113601. https://doi.org/10.1016/j.indcrop.2021.113601.

[12] F. Kalleli, I.B. Rebey, W.A. Wannes, F. Boughalleb, M. Hammami, M. Saidani Tounsi, M. M'hamdi, J. Food Biochem. 43(8) (2019) e12935. https://doi.org/10.1111/jfbc.12935.

[13] L.-.J. Dong, X.-.Y. Huang, Z.-.F., Wei, B.-.S. Zhao, H.-.Y. Yang, Flavour Fragrance J. 37(7) (2022) 154–162. https://doi.org/10.1002/ffj.3691.

[14] J.B. Patel, B. Patel, R.K. Patel, B.H. Patel, J. Pharm. Sci. Biosci. Res. 2(4) (2012) 176–178. http://www.jpsbr.org/index_htm_files/4_JPSBR12RS100.pdf.

[15] G. Shi, L. Lin, Y. Liu, G. Chen, A. Yang, Y. Wu, Y. Zhou, H. Li, Molecules 26(11) (2021) 3169. https://doi.org/10.3390/molecules26113169.

[16] M. Koşar, T. Özek, M. Kürkçüoglu, K.H.C. Başer, J. Essent. Oil Res. 19(5) (2007) 426–429. https://doi.org/10.1080/10412905.2007.9699943.

[17] S.J.P.L. van den Berg, P. Restani, M.G. Boersma, L. Delmulle, I.M.C.M. Rietjens, Food Nutr. Sci. 2(9) (2011) 989–1010. http://doi.org/10.4236/fns.2011.29134.

[18] A. Eisenreich, M.E Götz, B. Sachse, B.H. Monien, K. Herrmann, B. Schäfer, Foods 10(9) (2021) 2139. https://doi.org/10.3390/foods10092139.

[19] Á. Kapás, C.D. András, T.Gh. Dobre, E. Vass, G. Székely, M. Stroescu, S. Lányi, B. Ábrahám, UPB Sci. Bull., Ser. B 73(4) (2011) 113–120. https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full69807.pdf .

[20] T. Zárybnický, I. Boušová, M. Ambrož, L. Skálová, Arch. Toxicol. 92(1) (2018) 1–13. https://doi.org/10.1007/s00204-017-2062-2.

[21] J. González-Rivera, C. Duce, D. Falconieri, C. Ferrari, L. Ghezzi, A. Piras, M.R. Tine, Innovative Food Sci. Emerging Technol. 33 (2016) 308–318. http://doi.org/10.1016/j.ifset.2015.12.011.

[22] M.S. Uddin, S. Ferdosh, M.J.H. Akanda, K. Ghafoor, A.H. Rukshana, M.E. Ali, B.Y. Kamaruzzaman, M.B. Fauzi, S. Hadijah, S. Shaarani, M.Z.I. Sarker, Separation Sci. Technol. 53 (2018) 2206-2223. https://doi.org/10.1080/01496395.2018.1454472.

[23] M. Llompart, M. Celeiro, T. Dagnac, TrAC Trends Anal. Chem. 116 (2019) 136-150. https://doi.org/10.1016/j.trac.2019.04.029.

[24] S.D. Đurović, D. Micić, M. Jovanović, B. Dojčinović, D. Mitić Ćulafić, Y.A. Smyatskaya, P. Riabov, R. Božović, Food Biosci. 61 (2024) 104901. https://doi.org/10.1016/j.fbio.2024.104901.

[25] M. Pencheva, M. Nikolova, S. Damianova, M. Dushkova, N. Menkov, A. Stoyanova, Appl. Sci. 14 (2024) 7240. https://doi.org/10.3390/app14167240.

[26] L. Petigny, S. Périno, M. Minuti, F. Visinoni, J. Wajsman, F. Chemat, Int. J. Mol. Sci. 15(5) (2014) 7183–7198. http://doi.org/10.3390/ijms15057183.

[27] N. Rombaut, A.S. Tixier, A. Bily, F. Chemat, Biofuels, Bioprod. Biorefin. 8(4) (2014) 530–544. https://doi.org/10.1002/bbb.1486.

[28] R.H. Bassyouni, I.E. Wali, Z. Kamel, M.F. Kassim, J. Herb. Med. 15 (2019) 100227. https://doi.org/10.1016/j.hermed.2018.08.002 .

[29] M.H. Farjam, F. Barzegari, Nat. Prod. 10(2) (2014) 44–48. https://www.tsijournals.com/articles/comparison-of-chemical-composition-and-antibactrial-activity-of-essential-oils-extracted-by-microwaveassisted-hydrodisti.pdf

Downloads

Published

19.03.2025

Issue

Section

Articles

How to Cite

Intensified microwave-assisted hydrodistillation produces trans-anethole-rich fennel (Foeniculum vulgare Mill.) fruit essential oil: Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ240807004I

Funding data

Similar Articles

1-10 of 50

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)