USE OF AN INTERNAL LOOP AIRLIFT BIOREACTOR TO PRODUCE POLYHYDROXYALKANOATES BY Stenotrophomonas rhizophila

Original scientific paper

Authors

  • Berenice Clifton-García Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara. Olímpica, Guadalajara, Jal, Mexico
  • Juan Villafaña-Rojas Departamento de Biotecnológicas y Ambientales, Universidad Autónoma de Guadalajara, Zapopan, Jal., Mexico
  • Orfil González-Reynoso Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara. Olímpica, Guadalajara, Jal., Mexico
  • Jorge Ramon Robledo-Ortiz Departamento de Madera, Celulosa y Papel, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara. Guadalajara, México
  • Ricardo Manríquez-González Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara. Olímpica, Guadalajara, Jal, Mexico
  • Porfirio Gutiérrez-González Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara. Olímpica, Guadalajara, Jal.
  • Yolanda González-García Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara. Olímpica, Guadalajara, Jal, Mexico

DOI:

https://doi.org/10.2298/CICEQ230819014C

Keywords:

Airlift bioreactor, polyhydroxyalkanoates, molasses, Stenotrophomonas rhizophila

Abstract

Airlift-type bioreactors present advantages over conventional systems such as efficient mass transfer, simplicity of construction, and low energy consumption. Thus, they are a good alternative for the production of polyhydroxyalkanoates (PHAs) nevertheless, their use for that purpose has been barely studied. This work addresses the design, construction, and hydrodynamic characterization of a 2.4 L internal loop airlift bioreactor, evaluating the effect of the airflow, liquid volume, and disperser position, on the interfacial area and the mixing time. Then, it was used for the fed-batch production of PHB by Stenotrophomonas rhizophila from sugar cane molasses. It was found that the conditions to increase the interfacial area and minimize the mixing time were: airflow of 1.5 vvm, liquid volume of 2400 mL, and disperser position of 5 mm (distance between the air disperser and the drag tube). Under that configuration, the maximum biomass concentration, PHB production, and PHB accumulation achieved (54 h of culture) were 65.4 g/L, 39.9 g/L, and 60.2 % (g of PHB/100 g dry biomass), respectively. The polymer was poly-3-hydroxybutyrate, with a melting temperature of 170 °C, crystallinity of 56.4 %, and a Mw of 735 kDa.

References

[1] Y. González García, J.C. Meza Contreras, O. González Reynoso, J.A. Córdova López, Rev. Int. de Contam. 29 (2013) 77—115. https://www.scielo.org.mx/pdf/rica/v29n1/v29n1a7.pdf.

[2] T. Keshavarz, I. Roy, Curr. Opin. Microbiol. 13 (2010) 321—326. https://doi.org/10.1016/j.mib.2010.02.006.

[3] G. Gahlawat, B. Sengupta, A.K. Srivastava, J. Ind.

Microbiol. Biotechnol. 39 (2012) 1377—1384. https://doi.org/10.1007/s10295-012-1138-5.

[4] J.G da C. Pradella, M.K Taciro, A.Y.P. Mateus, Bioresour. Technol. 101 (2010) 8355—8360. https://doi.org/10.1016/j.biortech.2010.05.046.

[5] P. Rivera-Terceros, E. Tito-Claros, S. Torrico, S. Carballo, D. Van-Thuoc, D. Quillaguamán, J. of Biol.Res-Thessaloniki. 22 (2015) 8. https://doi.org/10.1186/s40709-015-0031-6.

[6] L.Z. Tavares, E.S da Silva, J.G da C. Pradella, Biochem. Eng. J. 18 (2004) 21—31. https://doi.org/10.1016/S1369-703X(03)00117-7.

[7] A. García-Abuín, D. Gómez-Díaz, ACI. 1 (2010) 2 25—36. https://api.semanticscholar.org/CorpusID:93351577 ISSN-e0718-8706.

[8] G.B. Hurtado, A.M. Otálvaro, P.G. Duarte, Rev. Colomb. Biotecnol. 15 (2013) 106—114. https://doi.org/10.15446/rev.colomb.biote.v15n2.41272.

[9] J.C. Merchuk, Can. J. Chem. Eng. 81 (2003) 324—337. https://doi.org/10.1002/cjce.5450810301.

[10] G. Quijano, S. Revah, M. Gutiérrez-Rojas, L.B. Flores-Cotera, F. Thalasso, Process Biochem. 44 (2009) 619—624. https://doi.org/10.1016/j.procbio.2009.01.015.

[11] L. Jamir, V. Kumar, J. Kaur, S. Kumar, H. Singh, H. Environ. Technol. Rev. 10 (2021) 1, 131—142. https://doi.org/10.1080/21622515.2021.1892203.

[12] J. Aburto, E. Martínez-Hernández, Front. Energy Res. 8 (2021) 612647. https://doi.org/10.3389/fenrg.2020.612647.

[13] K.Y. Sen, S. Baidurah, Curr. Opin. Green Sustainable Chem. 27 (2021) 100412. https://doi.org/10.1016/j.cogsc.2020.100412.

[14] J. Wang, S. Liu, J. Huang, Z. Qu, Bioresour. Technol. 342 (2021) 126008. https://doi.org/10.1016/j.biortech.2021.126008.

[15] A.T. Adeleye, C.K. Odoh, O.C. Enudi, O.O. Banjoko, O. O. Osiboye, E.T. Odediran, H. Louis, Process Biochem. 96 (2020)174—193. https://doi.org/10.1016/j.procbio.2020.05.032.

[16] S. Zhang, J. Wang, H. Jiang, Food Chem. 346 (2021) 128860. https://doi.org/10.1016/j.foodchem.2020.128860.

[17] P. Marciniak, J. Możejko-Ciesielska, Polymers 13 (2021) 11, 1731. https://doi.org/10.3390/polym13111731.

[18] S. Y. Jo, Y.J. Sohn, S.Y. Park, J. Son, J.I. Yoo, K.A. Baritugo, S.J. Park, Korean J. Chem. Eng.38 (2021) 7, 1452—1459. https://doi.org/10.1007/s11814-021-0783-7.

[19] B. Clifton‐García, O. González‐Reynoso, J.R. Robledo‐Ortiz, J. Villafaña‐Rojas, Y. González‐García, Lett. Appl. Microbiol. 70 (2020) 300—309. https://doi.org/10.1111/lam.13272.

[20] J. Gao, S. Wu, Y. Liu, S. Wu, C. Jiang, X. Li, X. Zhuang, X. Environ. Pollut. 263 (2020) 114622. https://doi.org/10.1016/j.envpol.2020.114622.

[21] S.P. Kumar, B.K. Manjunatha, Sci., Technol. Arts Res. J. 4 (2015) 3, 139—144. https://www.ajol.info/index.php/star/article/view/142953.

[22] B.N. Sánchez-Pérez, A. Zenteno-Rojas, C.I. Rincón-Molina, V.M. Ruíz-Valdiviezo, F.A. Gutiérrez-Miceli, M. A., Vences-Guzmán, R. Rincón-Rosales, Water, Air, Soil Pollut. 231 (2020) 1—15. https://doi.org/10.1007/s11270-020-04481-6.

[23] M. Moo-Young, Comprehensive Biotechnology, Academic Press, Burlington (2011), p.199. https://doi.org/10.1016/B978-0-08-088504-9.00095-7.

[24] E.R Gouveia, C.O. Hokka, A.C. Badino-Jr, Braz. J. Chem. Eng. 20 (2003) 363—374. https://doi.org/10.1590/S0104-66322003000400004.

[25] G.C. Noverón, (2009). [Thesis, Instituto Politécnico Nacional] https://tesis.ipn.mx/bitstream/handle/123456789/23318/Nover%c3%b3n%20Nava%20Guillermo%20Cuarto.pdf?sequence=1&isAllowed=y.

[26] M. Blažej, M. Kiša, J. Markoš, Chem. Eng. Process. 43 (2004) 1519—1527. https://doi.org/10.1016/j.cep.2004.02.003.

[27] J.C. Merchuk, M. Gluz, Encycl Bioprocess Technol. Eds M.C. Flickinger and S.W. Drew, New York (2002), p,320 https://doi.org/10.1002/0471250589.ebt029.

[28] M. Mourabet, A. El Rhilassi, H. El Boujaady, M. Bennani-Ziatni, A. Taitai, Arabian J. Chem. 10 (2017) 2, 3292—3302. https://doi.org/10.1016/j.arabjc.2013.12.028.

[29] M. DuBois, K.A. Gilles, J.K. Hamilton, P.A Rebers, Anal. Chem. 28 (1956) 350—356. https://doi.org/10.1021/ac60111a017.

[30] F.W. Gilcreas, Am J Public Health Nations Health. 56 (1966) 3, 387—388. https://ajph.aphapublications.org/doi/pdf/10.2105/AJPH.56.3.387.

[31] M.P. Rajankar, S. Ravindranathan, P.R. Rajamohanan, A. Raghunathan, Biol. Methods Protoc. 3 (2018) 1. https://doi.org/10.1093/biomethods/bpy007.

[32] C.M. Belda-Galbis, M.C. Pina-Pérez, J. Espinosa, A. Marco-Celdrán, A. Martínez, D. Rodrigo, Food Microbiol. 38 (2014) 56—61. https://doi.org/10.1016/j.fm.2013.08.009.

[33] M. Mahmoudi, M.S. Baei, G.D. Najafpour, F. Tabandeh, H. Eisazadeh, Afr. J. Biotechnol. 9 (2010) 3151—3157. https://doi.org/10.4314/ajb.v9i21.

[34] N. Moreno-Sarmiento, D. Malagón-Romero, J. Cortázar, A. Espinosa-Hernández, Univ. Scientiarum. 11 (2006) 41—48, https://www.virtualpro.co/revista/universitas-scientiarum-vol-11-no1/7

[35] E.V. Torres-Tello, J.R. Robledo-Ortíz, Y. González-García, A.A. Pérez-Fonseca, C.F. Jasso-Gastinel, E. Mendizábal, Ind. Crops Prod. 99 (2017) 117—125. https://doi.org/10.1016/j.indcrop.2017.01.035.

[36] M. Mohajerani, M. Mehrvar, F. Ein-Mozaffari, Can. J. Chem. Eng. 90 (2012) 1612—1631. https://doi.org/10.1002/cjce.20674.

[37] T. Zhang, C. Wei, C. Feng, J. Zhu, Bioresour. Technol. 104 (2012) 600—607. https://doi.org/10.1016/j.biortech.2011.11.008.

[38] F. Veana, J.L. Martínez-Hernández, C.N. Aguilar, R. Rodríguez-Herrera, G. Michelena, Braz. J. Microbiol. 45 (2014) 373—377. https://doi.org/10.1590/S1517-83822014000200002.

[39] K.P. Eliodório, G.C.D.G.E. Cunha, F.S.D.O. Lino, M.O.A. Sommer, A.K. Gombert, R. Giudici, T.O. Basso, Sci. Rep. 13 (2023) 1, 10567.

https://doi.org/10.1038/s41598-023-37618-8.

[40] M.S. Khatun, M. Hassanpour, S.I. Mussatto, M.D. Harrison, R.E. Speight, I.M. O’Hara, Z. Zhang, Bioresour. Bioprocess 8 (2021) 1—12. https://doi.org/10.1186/s40643-021-00438-7.

[41] Y.D. N'Guessan, E.M. Bedikou, K.A. Otchoumou, C.I. Assemian, A.C. Ehon, J. Sugarcane Res.11 (2023) 147—157. https://doi.org/10.37580/JSR.2021.2.11.147-157.

[42] M. Koller, Fermentation, 4 (2018) 30. https://doi.org/10.1007/s00449-013-0885-7.

[43] M. Miranda De Sousa Dias, M. Koller, D. Puppi, A. Morelli, F. Chiellini, G. Braunegg, Bioengineering, 4 (2017) 36. https://doi.org/10.3390/bioengineering4020036.

[44] W. Blunt, Levin, N. Cicek, Polymers, 10 (2018) 1197. https://doi.org/10.3390/polym10111197.

[45] L.R.Castilho, D.A. Mitchell, D.M. Freire, Biores. Technol. 100 (2009) 5996—6009. https://doi.org/10.1016/j.biortech.2009.03.088.

[46] M. Zafar, S.Kumar, A.K Dhiman,v J. Ind. Microbiol. Biotechnol., 39 (2012) 987—1001. https://doi.org/10.1007/s10295-012-1102-4.

[47] P. Kanjanachumpol, S. Kulpreecha, V. Tolieng, N. Thongchul. Bioprocess Biosyst. Eng. 36 (2013)1463—74. https://doi.org/10.1007/s00449-013-0885-7.

[48] F. Wang, S.Y. Lee, Appl. Environ. Microbiol. 63 (1997) 9 3703—3706. https://doi.org/10.1128/aem.63.9.3703-3706.1997.

[49] E.G. Kiselev, A.V. Demidenko, N.O. Zhila, E.I. Shishatskaya, T.G. Volova, Bioengineering 9 (2022) 154. https://doi.org/10.3390/bioengineering9040154,

[50] J.C. Quagliano, S.S. Miyazaki, Appl. Microbiol. Biotechnol. 48 (1997) 662—664. https://doi.org/10.1007/s002530051112,

[51] J. Ahn, E.H. Jho, K. Nam, Environ. Eng. Res. 20 (2015) 246—253. https://doi.org/10.4491/eer.2015.055.

[52] A. Bhattacharyya, A. Pramanik, S.K. Maji, S. Haldar, U.K. Mukhopadhyay, J. Mukherjee, AMB Expr. 2 (2012) 34. https://doi.org/10.1186/2191-0855-2-34.

[53] C.K. Chang, H.M. Wang, J. Lan, Polymers. 10 (2018) 355. https://doi.org/10.3390/polym10040355.

[54] W.H. Lee, C.Y. Loo, C.T. Nomura, K. Sudesh, Bioresour. Technol. 99 (2008) 6844—6851. https://doi.org/10.1016/j.biortech.2008.01.051.

[55] R. Li, Y. Jiang, X. Wang, J. Yang, Y. Gao, X. Zi, X. Zhang, H. Gao, N. Hu, Springer Plus. 2 (2013) 335. https://doi.org/10.1186/2193-1801-2-335,

[56] A.J. Dos Santos, L.V. Oliveira Dalla Valentina, A.A. Hidalgo Schulz, M.A. Tomaz Duarte, Part I. Ing. Cienc. 13 (2017) 269—298. https://doi.org/10.17230/ingciencia.13.26.10.

[57] M. Koller, L. Marsalek, Appl. Food Biotechnol. 2 (2015) 3—15. https://doi.org/10.22037/afb.v2i3.8271.

[58] H. Lu, S.A. Madbouly, J.A. Schrader, M.R- Kessler, D. Grewell, W.R. Graves, RSC Adv. 4 (2014) 39802—39808. https://doi.org/10.1039/C4RA04455J.

[59] C. Insomphun, S. Kobayashi, T. Fujiki, K. Numata, AMB Expr. 6 (2016) 29. https://doi.org/10.1186/s13568-016-0200-5.

Downloads

Published

03.03.2025

Issue

Section

Articles

How to Cite

USE OF AN INTERNAL LOOP AIRLIFT BIOREACTOR TO PRODUCE POLYHYDROXYALKANOATES BY Stenotrophomonas rhizophila: Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly, 31(1), 71-82. https://doi.org/10.2298/CICEQ230819014C

Similar Articles

You may also start an advanced similarity search for this article.