REACTION PARAMETER OPTIMIZATION OF AMMONIUM SULFATE PRODUCTION FROM PHOSPHOGYPSUM

Original scientific paper

Authors

  • Cemre Avşar Toros Agri-Industry, Research and Development Center, Mersin, Turkey and University, Department of Chemical Engineering, Ankara, Turkey https://orcid.org/0000-0002-8953-9859
  • Suna Ertunç Ankara University, Department of Chemical Engineering, Ankara, Turkey

DOI:

https://doi.org/10.2298/CICEQ231130013A

Keywords:

Ammonium sulfate, circular economy, wet conversion, phosphogypsum, resource recovery

Abstract

Phosphogypsum (PG), the by-product of wet process phosphoric acid production, has a high recycle and reuse potential within the scope of compliance with CE strategies. This study offers a straightforward, two-step solid/liquid heterogeneous reaction sequence, providing the conversion of PG to ammonium sulfate (AS). Experiments were conducted following the OFAT design matrix with 3 factors, namely solid/liquid (w/v) ratio, pH, and particle size. The highest PG to AS conversion was achieved at 54.55% by utilizing PG below 125 µm particle size in the reaction performed with 1/10 solid/liquid (w/v) ratio at pH 10. Nitrogen and sulfur content of AS samples were characterized by Dumas Method and gravimetric SO4 (ISO 9280:1990) analysis, respectively. The elemental composition was determined by ICP-OES, the crystallographic structure was investigated by XRD analysis, and the surface morphology of the particles obtained in the reaction was examined by SEM analysis. The chemical composition of AS product obtained at these conditions was determined as 21.29 wt% nitrogen and 24.23 wt% sulfur, respectively; where theoretical nitrogen and sulfur content in AS is 21.21 wt% and 24.24 wt%, respectively. This study provides outputs that have industrial importance since it proposes a novel approach for effective waste valorization and a new insight into AS production in the current fertilizer shortage.

References

[1] N. Amiri, M. Yacoubi, M. Messouli, IGI Global (2023) 69—192. https://doi.org/10.4018/978-1-6684-4649-2.ch007.

[2] A. Paucean, V. Muresan, Processes 11(1) (2023) 150. https://doi.org/10.3390/pr11010150.

[3] J.C. Cheong, J.T.E. Lee, J.W. Lim, S. Song, J.K.N. Tan, Z.Y. Chiam, K.Y. Yap, E.Y. Lim, J. Zhang, H.T.W. Tan, Y.W. Tong, Sci. Total Environ. 715 (2020) 136789. https://doi.org/10.1016/j.scitotenv.2020.136789.

[4] T. Eftimov, G. Popovski, M. Petkovic, B.K. Seljak, D. Kocev, Trends Food Sci. Technol. 104 (2020) 268—272. https://doi.org/10.1016/j.tifs.2020.08.017.

[5] M. Ali, A. Aljounaidi, A. Ateik, SSRN eLibrary. http://doi.org/10.2139/ssrn.4320568.

[6] A.M. Asegie, S.T. Adisalem, A.A. Eshetu, African J. Sci. Technol. Innov. Dev. 16 (2) (2024), 253—264. https://doi.org/10.1080/20421338.2023.2295626.

[7] URL:https://www.reuters.com/markets/commodities/china-slows-fertiliser-exports-raising-industry-concerns-india-2023-09-08/ (19.02.2024).

[8] S. Saraf, A. Bera, Int. J. Oil, Gas Coal Technol. 35(2) (2024) 205—240. https://doi.org/10.1504/IJOGCT.2024.136546.

[9] H. van Meijl, H. Bartelings, S. van Berkum, H.D. Cui, Z.S. Kristkova, W.J. van Zeist, Commun. Earth Environ. 5 (2024) 59. https://doi.org/10.1038/s43247-024-01208-x.

[10] M.S. Uddin, K. Mahmud, B. Mitra, A.E. Hridoy, S.M. Rahman, M. Shafiullah, M.S. Alam, M.I. Hossain, M. Sujauddin, Sustainability 15(3) (2023) 1748. https://doi.org/10.3390/su15031748.

[11] G. Liu, M. He, H. Chen, A.M. Rashad, Y. Liang, Constr. Build. Mater. 415 (2024) 135030. https://doi.org/10.1016/j.conbuildmat.2024.135030.

[12] B. Bouargene, K. Laaboubi, M.G. Biyoune, B. Bakiz, A. Atbir, J. Mater. Cycles Waste Manage. 25 (2023) 1288—1308. https://doi.org/10.1007/s10163-023-01617-8.

[13] M.A. Matveeva, Y.D. Smirnov, D.V. Suchkov, Environ. Geochem. Health 44 (2021) 1605—1618. https://doi.org/10.1007/s10653-021-00988-x.

[14] A. Idboufrade, B. Bouargene, B. Ennasraoui, M.G. Biyoune, A. Bachar, B. Bakiz, A. Atbir, S. Mançour-Billah, Waste Biomass Valor. 13 (2022) 1795—1806. https://doi.org/10.1007/s12649-021-01600-0.

[15] B. Bouargene, A. Marrouche, S.E. Issiouy, M.G. Biyoune, A. Mabrouk, A. Atbir, A. Bachar, R. Bellajrou, L. Boukbir, B. Bakiz, J. Mater. Cycles Waste Manage. 21(6) (2019) 1563—1571. http://dx.doi.org/10.1007%2Fs10163-019-00910-9.

[16] M. Zhang, X. Fan, Sci. Rep. 13 (2023) 4156. https://doi.org/10.1038/s41598-023-28251-6.

[17] Y. Ennaciri, A. Cherrat, H. El Alaoui-Belghiti, M. Bettach, Mor. J. Chem. 11(2) (2023) 444—459. https://doi.org/10.48317/IMIST.PRSM/morjchem-v11i2.35817.

[18] A.O. Gezerman, Int. J. Chem. Technol. 6(2) (2022) 102—107. https://doi.org/10.32571/ijct.1187158.

[19] A. IM.Chou, (1995) Technical report, March 1-May 31, 1995. No. DOE/PC/92521-T241.

[20] C. Avşar, D. Tümük, S. Ertunç, A.O. Gezerman, Chem. Rev. Lett. 5(1) (2022) 83—91. https://doi.org/10.22034/crl.2022.329067.1154.

[21] C. Avşar, D. Tümük, A.E. Yüzbaşıoğlu A.E., A.O. Gezerman, Kem. Ind. 71(9-10) (2022) 633—638. https://doi.org/10.15255/KUI.2021.088.

[22] C.R. Canovas, R. Perez-Lopez, F. Macias, S. Chapron, J.M. Nieto, S. Pellet-Rostaing, J. Clean. Prod. 143 (2017) 497—505. https://doi.org/10.1016/j.jclepro.2016.12.083.

[23] S. Mousa, A. Hanna, Mater. Res. Bull. 48(2) (2013) 823—828. https://doi.org/10.1016/j.materresbull.2012.11.067.

[24] D.D. Frey, F. Engelhardt, E.M. Greitzer, Res. Eng. Des.14 (2003) 65—74. https://doi.org/10.1007/s00163-002-0026-9.

[25] F. Campolongo, J. Cariboni, A. Saltelli, Environ. Model. Software 22(10) (2007) 1509—1518. https://doi.org/10.1016/j.envsoft.2006.10.004.

[26] J. Wang, W. Wan, Int. J. Hydrogen Energy 34(1) (2009) 235—244. https://doi.org/10.1016/j.ijhydene.2008.10.008.

[27] S. Billon, P. Vieillard, Am. Mineral. 100(2-3) (2015) 615—627. https://doi.org/10.2138/am-2015-4925.

[28] B. Puzio, M. Manecki, M. Kwasniak-Kominek, Minerals 8(7) (2018) 281. https://doi.org/10.3390/min8070281.

[29] I. Hammas, K. Horchani-Naifer, M. Ferid, Int. J. Miner. Process.123 (2013) 87—93. https://doi.org/10.1016/j.minpro.2013.05.008.

[30] C. Avşar, S. Ertunç, Environ. Qual. Manage. 32(3) (2022) 367—374. https://doi.org/10.1002/tqem.21929.

[31] A.T. Kandil, M.F. Cheira, H.S. Gado, M.H. Soliman, H.M. Akl, J. Radiat. Res. Appl. Sci. 10(1) (2017) 24—33. https://doi.org/10.1016/j.jrras.2016.11.001.

[32] J.F. Ferguson, D. Jenkins, J. Eastman, J. Water Pollut. Control Fed. 45(4) (1973) 620—631.

[33] Y. Lei, B. Song, van der Weijden, M. Saakes, C.J.N. Buisman, Environ. Sci. Technol. 51(19) (2017) 11156—11164. https://doi.org/10.1021/acs.est.7b03909.

[34] A. Bounaga, A. Alsanea, K. Lyamlouli, C. Zhou, Y. Zeroual, R. Boulif Rittmann, Biotechnol. Adv. 57 (2022) 107949.

https://doi.org/10.1016/j.biotechadv.2022.107949.

[35] T. Mashifana, F. Ntuli, F. Okonta, S. Afr. J. Chem. Eng. 27 (2019) 1—6. https://doi.org/10.1016/j.sajce.2018.11.001.

[36] J. Park, W. Lee, J.K. Choe, Y. Choi, Sep. Purif. Technol. 318 (2023) 123869. https://doi.org/10.1016/j.seppur.2023.123869.

[37] C. Avşar (2023). PhD Thesis, Ankara University Institute of Natural and Applied Sciences.

[38] Unpublished report. Toros AGRI Industry and Trade Co. Inc. R&D Center, Mersin/ Turkey.

[39] C. Avşar (2022). Kem. Ind. 71 (2022). https://doi.org/10.15255/KUI.2021.057.

[40] Y. Wibisono, V. Rafianto, D. Alvianto, G. Djoyowasito, B. D. A. Nugroho, C. Arif, Int. J. Recycl. Org. Waste Agric. 12 (4) (2023) 601—614. https://doi.org/10.30486/ijrowa.2023.1964772.1518.

[41] M. Ammar, S. Ashraf, J. Baltrusaitis, Ceramics 6(3) (2023) 1799—1825. https://doi.org/10.3390/ceramics6030110.

[42] A. Kara, R. Stevens, J. Eur. Ceram. 22(5) (2002) 731—736. https://doi.org/10.1016/S0955-2219(01)00371-5.

Downloads

Published

03.03.2025

Issue

Section

Articles

How to Cite

REACTION PARAMETER OPTIMIZATION OF AMMONIUM SULFATE PRODUCTION FROM PHOSPHOGYPSUM: Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly, 31(1). https://doi.org/10.2298/CICEQ231130013A

Funding data

Similar Articles

11-20 of 36

You may also start an advanced similarity search for this article.