THE INFLUENCE OF VIBRATION VELOCITY ON THE NANOCOMPOSITE OF HALLOYSITE CLAY NANOTUBES

Original scientific paper

Authors

  • Behrooz Sedighi Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
  • Abolfazl Davodiroknabadi Department of Design and Clothing, Yazd Branch, Islamic Azad University, Yazd, Iran
  • Mohammad Shahvaziyan Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
  • Mohammadali Shirgholami Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran

DOI:

https://doi.org/10.2298/CICEQ240712003S

Keywords:

Clay nanotubes, vibration speed, electrospinning, nano web

Abstract

This research examined the properties of a nanoweb created using the electrospinning technique, incorporating Halloysite clay nanotubes. The main focus was to understand how different vibration speeds affected the characteristics of the nanoweb. By utilizing FESEM and elemental mapping, it was confirmed that the Halloysite clay nanotubes were present and provided valuable insights into the structure of the samples. The results regarding electrical conductivity were remarkable, showing that the treated specimens had higher crease recovery properties compared to the untreated ones(more than 24%), thanks to the presence of Halloysite clay nanotubes and the different vibration speeds applied. In addition, the samples showed improved UV blocking capabilities up to about 75%, as well as exceptional strength (~33%)  and abrasion resistance (~93%). Overall, the nanocomposite webs exhibited promising qualities that could have applications in various industries.

References

[1] M. Mirjalili, S. Zohoori, J. Nanostruct. Chem. 6 (2016) 207. https://doi.org/10.1007/s40097-016-0189-y.

[2] S. Zohoori, M. Latifi, A. Davodiroknabadi, M. Mirjalili, Pol. J. Chem. Technol. 19 (2017) 56. https://doi.org/10.1515/pjct-2017-0049.

[3] A.S. Lebedev, A.V. Suzdal’tsev, V.N. Anfilogov, A.S. Farlenkov, N.M. Porotnikova, E.G. Vovkotrub, L.A. Akashev, Inorg. Mater. 56 (2020) 20. https://doi.org/10.1134/s0020168520010094.

[4] Y.V. Suvorova, S.I. Alekseeva, M.A. Fronya, I.V. Viktorova, Inorg. Mater. 49 (2013) 1357. https://doi.org/10.1134/s0020168513150089.

[5] A. Al-Attabi, M.A. Abdulhadi, L.R. Al-Ameer, M.D.N. Hussein, S.J. Abdulameer, R.S. Zabibah, A. Fadhil, Int. J.

Mater. Res. 115 (2024) 162. https://doi.org/10.1515/ijmr-2023-0125.

[6] A. Davodiroknabadi, S. Zohoori, R. Talebikatieklahijany, F. Mohammadisaghand, S. Shahsavari, R. Mohammadisaghand, P. Zangeneh, Appl. Biochem. Biotechnol. (2024). https://doi.org/10.1007/s12010-024-04967-7.

[7] G. Esenoğlu, M. Barisik, M. Tanoğlu, M. Yeke, C. Türkdoğan, H. İplikçi, S. Martin, K. Nuhoğlu, E. Aktaş, S. Dehneliler, M.E. İriş, J. Compos. Mater. 56 (2022) 4449. https://doi.org/10.1177/00219983221133478.

[8] N. Sultana, R. Rahman, Emergent Mater. 5 (2022) 145. https://doi.org/10.1007/s42247-021-00326-y.

[9] D. Regmi, J. Choi, J. Xu, ECS Adv. 3 (2024) 4101. https://doi.org/10.1149/2754-2734/ad86cc.

[10] Y. Ghiasi, A. Davodiroknabadi, S. Zohoori, Bull. Mater. Sci. 44 (2021) 89. https://doi.org/10.1007/s12034-021-02406-5.

[11] S. Zohoori, S. Shahsavari, M. Sabzali, S. A. Hosseini, R. Talebikatieklahijany, Z. Morshedzadeh, J. Nat. Fibers. 19 (2022) 8937. https://doi.org/10.1080/15440478.2021.1975600.

[12] M. Asakereh, S. Zohoori, F. Mohammadisaghand, M. Sabzali, R. Mohammadisaghand, B. Soltani, J. Nat. Fibers. 19 (2022) 15552. https://doi.org/10.1080/15440478.2022.2131024.

[13] M. Alghamdi, A. El-Zahhar, Chem. Ind. Chem. Eng. Q. 27 (2021) 35. https://doi.org/10.2298/ciceq200128022a.

[14] R. Subramaniam, A. Eswaran, G. Sivasubramanian, A. Gurusamy, Emergent Mater. 6 (2023) 261. https://doi.org/10.1007/s42247-022-00434-3.

[15] S.M.U. Krithika, K. Mani, S.K. Thangavelu, C.M. Bharathi, K. Saravanan, C. Prakash, AATCC J. Res. 9 (2022) 213. https://doi.org/10.1177/24723444221103675.

[16] E.G. Il’in, A.S. Parshakov, S.Y. Kottsov, M.I. Razumov, D.Y. Gryzlov, Inorg. Mater. 58 (2022) 1130. https://doi.org/10.1134/s002016852211005x.

[17] V. Şimşek, M.O. Çağlayan, Int. J. Mater. Res. 114 (2023) 1047. https://doi.org/doi:10.1515/ijmr-2022-0491.

[18] A. Momeni, A. Ghadi, R. Fazaeli, M. Khavarpour, Int. J. Mater. Res. 114 (2023) 753. https://doi.org/doi:10.1515/ijmr-2021-8516.

[19] H. Salimimofrad, A. Rahbarranji, H. Saghafi, J. Compos. Mater. 58 (2024) 441. https://doi.org/10.1177/00219983231226277.

[20] N. Gupta, R. Maharsia, Appl. Compos. Mater. 12 (2005) 247. https://doi.org/10.1007/s10443-005-1130-6.

[21] S. Zohoori, N. Torabi, E. Gholami, F. Rastgoo, M. Rad, R. Pourheidari, Discover Mater. 4 (2024) 92. https://doi.org/10.1007/s43939-024-00164-9.

[22] O. Josephgbadeyan, T.P. Mohan, K. Kanny, Mater. Today: Proc. 87 (2023) 252. https://doi.org/10.1016/j.matpr.2023.05.352.

[23] S. Zohoori, M. Dolatshahi, M. Pourahmadi, M. Hajisafari, Fiber Integr. Opt. 38 (2019) 1. https://doi.org/10.1080/01468030.2019.1567871.

[24] R. Soltanisarvestani, S. Zohoori, A. Soltanisarvestani, Int. J. Electron. 107 (2020) 444. https://doi.org/10.1080/00207217.2019.1661027.

[25] S. Shamchi, X. Yi, P.M.G.P. Moreira, Appl. Compos. Mater. 30 (2023) 1. https://doi.org/10.1007/s10443-022-10070-z.

[26] N. Rac-Rumijowska, H. Teterycz, Mater. 16 (2023) 3085. https://doi.org/10.3390/ma16083085.

[27] A. Chanda, S.K. Sinha, N. Datla, Composites, Part A. 149 (2021) 106543. https://doi.org/10.1016/j.compositesa.2021.106543.

Downloads

Published

08.02.2025 — Updated on 16.04.2025

Issue

Section

Articles

How to Cite

THE INFLUENCE OF VIBRATION VELOCITY ON THE NANOCOMPOSITE OF HALLOYSITE CLAY NANOTUBES: Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly, 31(4), 315-323. https://doi.org/10.2298/CICEQ240712003S

Funding data

Similar Articles

11-20 of 25

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)