FORECASTING RESEARCH OF MIXING UNIFORMITY OF CERIUM CHLORIDE SOLUTION UNDER MICROWAVE HEATING

Original scientific paper

Authors

  • Chao Lv State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China https://orcid.org/0000-0001-8334-4957
  • Yanlong Liu Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Northeastern University at Qinhuangdao, Qinhuangdao 066000, Hebei, China
  • Lu Lu Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Northeastern University at Qinhuangdao, Qinhuangdao 066000, Hebei, China

DOI:

https://doi.org/10.2298/CICEQ240712002L

Keywords:

Cerium oxide, physical experiment, numerical simulation, VMD-SSA-LSTM, forecast

Abstract

Cerium oxide is an important strategic resource and a key raw material for many functional materials in high-tech fields. Microwave heating is an important method to prepare cerium oxide. In the study of cerium oxide prepared by microwave heating, the variation of the polarity factor inside the solution during heating was explored. In addition to thermal effects, microwave heating also exerts electromagnetic influences that promote the mixing of the solution. This study presents both physical experiments and numerical simulations of the mixing behavior of cerium chloride solutions under microwave exposure. The results reveal that under the influence of the microwave electromagnetic field, the mixing uniformity of the solution remains consistent and stable across the entire region. The VMD-SSA-LSTM model was proposed to forecast the mixing uniformity under different process conditions. The results show that the mixing effect of cerium chloride solution under microwave is better than that under conventional heating. The selected forecast model saves time and energy and can accurately forecast the above situation. In addition, the forecast effect is best when the modal number k of VMD decomposition is selected as 3.

References

[1] C.Y. Chen, J.M. Lu, Q.Z. Yao, Chem. Eng. Sci. 22 (2016) 2501—2512. https://doi.org/10.12659/MSM.899852.

[2] Y. Xu, S.H. Yang, G.X. You, Asian J. Ecotoxicol. 16 (2021) 43—55. https://kns.cnki.net/kcms2/article/abstract.

[3] A. Patlán, V. Ayala-García, L. Valenzuela-García, PLoS. One. 14 (2019) e0211653. https://doi.org/10.1371/journal.pone.0211653.

[4] P. Min, S.Z. Zhang, Y.H. Xu, R.X. Li, Appl. Surf. Sci. 448 (2018) 435—443. https://doi.org/10.1016/j.apsusc.2018.04.103.

[5] G. Yoganandan, V. Durgambika, P. Manoj, M.N. Thayee, B.J. Nagabushan, R. Michael, N. Lakshman, Electrochim. Acta. 425 (2022) 140696. https://doi.org/10.1016/j.electacta.2022.140696.

[6] B. Richa, N. Sreeja, K. Krishna, Mater. Today Commun. 30 (2022) 103177. https://doi.org/10.1016/j.mtcomm.2022.103177.

[7] D.T. Diksha, M. Ananthkumar, Mater. Today: Proc. 49 (2022) 2007—2012. https://doi.org/10.1016/j.matpr.2021.08.1572.

[8] N. Li, Z.D. Chen, J.J. Wang, J. Mater. Rev. 36 (2022) 54—63. https://kns.cnki.net/kcms2/article/abstract.

[9] C.Y. Wang, P. Tong, C. Li, Carcinog., Teratog. Mutagen. 31 (2019) 464—468. https://kns.cnki.net/kcms2/article/abstract.

[10] L. Zhang, L.M. Zhu, T. Zhou, P. Guo, X. Wang, P. Liu, W. Shao, Mater. Des. 215 (2022) 110451. https://doi.org/10.1016/j.matdes.2022.110451.

[11] T. Bhusankar, Y. Kisoo, K. Jonghoon, Ceram. Int. 48 (2022) 3628—3635. https://doi.org/10.1016/j.ceramint.2021.10.143.

[12] H. Yang, L. Jia, Z. Zhang, B. Xu, Z. Liu, Q. Zhang, Y. Cao, M. Zhang, T. Ohno, J. Catal. 405 (2022) 74—83. https://doi.org/10.1016/j.jcat.2021.11.017.

[13] S. Galema, Chem. Soc. Rev. 26 (1997) 233—238. https://doi.org/10.1039/CS9972600233.

[14] C.O. Kappe, Chem. Bio. Chem. 43 (2004) 6250—6284. https://doi.org/10.1002/anie.200400655 .

[15] B.A. Roberts, C.R. Strauss, Acc. Chem. Res. 38 (2005) 653—661. https://doi.org/10.1021/ar040278m.

[16] F. Wiesbrock, R. Hoogenboom, U.S. Schubert, Macromol. Rapid Commun, 25 (2004) 1739—1764. https://doi.org/10.1002/marc.200400313.

[17] J.A Gerbec, D. Magana, A. Washington, G.F Strouse, J. Am. Chem. Soc. 127 (2005) 15791—15800. https://doi.org/10.1021/ja052463g.

[18] C. Lv, X. Lv, Q.Y. Zhao, Rare Metal. 46 (2022) 394—401. https://doi.org/10.13373/j.cnki.cjrm.xy19070035.

[19] C. Lv, T.A. Zhang, Z.H. Dou, Q.Y. Zhao, Rare Metals. 38 (2019) 1160—1168. https://doi.org/10.1007/s12598-019-01337-9.

[20] C. Lv, H.X. Yin, Y.L. Liu, X.X, Chen, H.L. Zhao, JOM. 75 (2023) 2421—2429. https://doi.org/10.1007/S11837-022-05654-W.

[21] C. Lv, T.A. Zhang, Z.H. Dou, Q.Y. Zhao, JOM. 71 (2019) 34—39. https://doi.org/10.1007/s11837-018-3194-4.

[22] C. Luan, Water Resources & Hydropower of Northeast China. 42 (2024) 23—29. https://kns.cnki.net/kcms2/article/abstract.

[23] Z.P. Lu, X.J Yu, C.Y. Lu, Journal of Wuhan University of Technology (Information & Management Engineering). 45 (2023) 546—551. https://kns.cnki.net/kcms2/article/abstract.

[24] H.J. Cao, Z.Y. Li, Modern Information Technology.8 (2024) 142—146152. https://doi.org/10.19850/j.cnki.2096-4706.2024.04.030.

[25] Y.J. Liu, Shandong University, 2024. https://kns.cnki.net/kcms2/article/abstract.

[26] S.Y. Pan, China University of Mining and Technology. 2023. https://kns.cnki.net/kcms2/article/abstract.

[27] J.L. Li, G.Y. Yin, G.H. Zhang, Proceedings of the 31st chinese control, 2012, 7552—7555. https://ieeexplore.ieee.org/abstract/document/6391279.

[28] Y.P. Ju, Y.G. Li, Chinese Automatomation Congress (CAC). 2017, 777—781. https://doi.org/10.1109/CAC.2017.8242871.

[29] M.T. Liu, B. Li, S. Yue, Y. Du, J. Xu, Signal image and video Pro. 18 (2024) 427—436. https://link.springer.com/article/10.1007/s11760-023-02738-1.

[30] Y.J. Zhang, W.N. Qin, X.F. Huang, HU BEI: CN104809297A, 2015-07-29. https://kns.cnki.net/kcms2/article/abstract.

[31] C. Lv, Y. Liu, G. Li, T. Yang, H. Zhao, X. Chen, Case Stud. Therm. Eng. 60 (2024) 104741. https://doi.org/10.1016/j.csite.2024.104741.

Downloads

Published

02.02.2025 — Updated on 16.04.2025

Issue

Section

Articles

How to Cite

FORECASTING RESEARCH OF MIXING UNIFORMITY OF CERIUM CHLORIDE SOLUTION UNDER MICROWAVE HEATING: Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly, 31(4), 305-314. https://doi.org/10.2298/CICEQ240712002L

Similar Articles

1-10 of 68

You may also start an advanced similarity search for this article.