Alcalase immobilization onto chitosan/glutaraldehyde/tripolyphosphate beads obtained by inverse emulsion technique

Original scientific paper

Authors

  • Milena Žuža Praštalo Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
  • Nikola Milašinović Department of Forensic Sciences, Faculty of Forensic Sciences and Engineering, University of Criminal Investigation and Police Studies, Cara Dušana 196, 11080 Belgrade, Serbia
  • Marko Jonović Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
  • Melina Kalagasidis-Krušić Department of Organic Chemical Technology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
  • Zorica Knežević-Jugović Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia

DOI:

https://doi.org/10.2298/CICEQ240401037Z

Keywords:

Alcalase® 2.4L, covalent immobilization, inverse emulsion technique, chitosan beads, tripolyphosphate

Abstract

Enzymes immobilization can efficiently solve limitations of their large-scale application, such as stability and reusability. In this study, Alcalase® 2.4L (protease from Bacillus licheniformis) was covalently immobilized onto chitosan beads obtained by inverse emulsion technique using 1.5% (m/v) of chitosan and 0.67 % (v/v) or 1.0 % (v/v) of glutaraldehyde (CTPP (1.5/0.67) and CTPP (1.5/1.0)). Afterwards, the beads were additionally crosslinked by immersion into 10 % (m/v) tripolyphosphate solution. Parameters studied were enzyme loading, enzyme coupling yield, beads diameter, SEM, biocatalyst activity and FTIR. The beads had adequate enzyme loading and enzyme coupling yield (Pgmax was 117.1 mg/g dry CTPP 1.5/0.67 and 90.1 mg/g dry CTPP 1.5/1.0; and hmax was 96.7 % for both carriers). CTPP (1.5/1.00) beads were smaller (diameter 635.2 ±25.2 mm wet/ 230.4±12.5 mm dry beads) and showed higher specific activity of 20.1 ± 0.23 IU/mgprotein. The immobilized Alcalase® 2.4L was tested for hydrolysing egg white and soy proteins. Alcalase® 2.4L, covalently attached to CTTP (1.5/1.0) chitosan beads, is a promising choice for industrial processes involving egg white protein hydrolysis, as the enzyme achieved a notable hydrolysis rate of 26.34 ± 0.879 % after 195 minutes. Additionally, it remained effective through five successive applications under practical conditions (50 °C, pH 8).

References

[1] C. Liu, M. Bhattarai, K. S. Mikkonen, M. Heinonen, J. Agric. Food Chem. 67 (2019) 6625–6632. https://doi.org/10.1021/acs.jafc.9b00914.

[2] A. Eberhardt, E. C. López, R. J. Ceruti, F. Marino, E. J. Mammarella, R. M. Manzo, G. A. Sihufe, Int. J. Dairy Technol. 72 (2019) 573–584. https://doi.org/10.1111/1471-0307.12606.

[3] F. Hussain, S. Arana-Peña, R. Morellon-Sterling, O. Barbosa, S. A. Braham, S. Kamal, R. Fernandez-Lafuente, Molecules. 23 (2018) 3188. https://doi.org/10.3390/molecules23123188.

[4] A. S. S. Ibrahim, A. A. Al-Salamah, A. M. El-Toni, K. S. Almaary, M. A. El-Tayeb, Y. B. Elbadawi, G. Antranikian, Int. J. Mol. Sci. 17 (2016) 184. https://doi.org/10.3390/ijms17020184.

[5] M. G. Žuža, N. Z. Milašinović, M. M. Jonović, J. R. Jovanović, M. T. Kalagasidis Krušić, B. M. Bugarski, Z. D. Knežević-Jugović, Bioprocess Biosyst. Eng. 40 (2017) 1713–1723. https://doi.org/10.1007/s00449-017-1826-7.

[6] Y. Aslan, A. Y. Taher, I. Cavidoğlu, J. Anim. Plant Sci. 28 (2018) 1648–1655. https://www.siirt.edu.tr/dosya/personel/alan-taher-yaseen-ile-makale-siirt-2019226111612272.pdf

[7] P. J. Allertz, S. Berger, G. Sellenk, C. Dittmer, M. Dietze, K. P. Stahmann, K. Salchert, Catalysts. 7 (2017) 1–21. https://doi.org/10.3390/catal7120359.

[8] R. Plagemann, J. von Langermann, U. Kragl, Eng. Life Sci. 14 (2014) 493–499. https://doi.org/10.1002/elsc.201300115.

[9] M. Planchestainer, D. R. Padrosa, M. L. Contente, F. Paradisi, Catalysts. 8 (2018) 40. https://doi.org/10.3390/catal8010040.

[10] P. Zucca, E. Sanjust, Molecules. 19 (2014) 14139–14194. https://doi.org/10.3390/molecules190914139.

[11] M. G. Žuža, S. Šiler-Marinković, Z. D. Knežević-Jugović, Chem. Ind. Chem. Eng. Q. 13 (2007) 205-210. https://doi.org/10.2298/CICEQ0704205Z.

[12] S. Ait Braham, F. Hussain, R. Morellon-Sterling, S. Kamal, J. F. Kornecki, O. Barbosa, D. E. Kati, R. Fernandez-Lafuente, Biotechnol. Prog. 35 (2019) 1–4. https://doi.org/10.1002/btpr.2768.

[13] L. Molawa, J. Jordaan, J. Limson, D. Brady, Biocatal. Biotransform. 31 (2013) 71–78. https://doi.org/10.3109/10242422.2013.767335.

[14] C. Fenoglio, N. Vierling, R. Manzo, R. Ceruti, G. Sihufe, E. Mammarella, Am. J. Food Technol. 11 (2016) 152–158. https://doi.org/10.3923/ajft.2016.152.158.

[15] T. B. Pessato, N. C. de Carvalho, O. L. Tavano, L. G. R. Fernandes, R. de L. Zollner, F. M. Netto, Food Res. Int. 83 (2016) 112–120. https://doi.org/10.1016/j.foodres.2016.02.015.

[16] Y. Liu, D. Dave, Aquaculture. 548 (2022) 737546. https://doi.org/10.1016/j.aquaculture.2021.737546.

[17] T. A. Siswoyo, N. F. Matra, A. A. Safiera, A. Supriyadi, IJASEIT. 7 (2017) 1315–1321. https://doi.org/10.18517/ijaseit.7.4.936.

[18] S. nan Wang, C. ran Zhang, B. kun Qi, X. nan Sui, L. zhou Jiang, Y. Li, Z. jiang Wang, H. xia Feng, R. Wang, Q. zhi Zhang, Eur. Food Res. Technol. 239 (2014) 1051–1059. https://doi.org/10.1007/s00217-014-2301-1.

[19] H. Zhu, Y. Zhang, T. Yang, D. Zheng, X. Liu, J. Zhang, LWT. 162 (2022) 113505. https://doi.org/10.1016/j.lwt.2022.113505.

[20] P. dos S. Kimberle, M. S. Carolina, I. S. B. Ana, R. B. G. Luciana, Process Biochem. 97 (2020) 27–36. https://doi.org/10.1016/j.procbio.2020.06.019.

[21] M. Jonović, M. Žuža, V. Ðorđević, N. Šekuljica, M. Milivojević, B. Jugović, B. Bugarski, Z. Knežević-Jugović, Catalysts. 11 (2021) 1–17. https://doi.org/10.3390/catal11030305.

[22] Q. Zeng, Q. Li, D. Sun, M. Zheng, Front. bioeng. biotechnol. 8 (2020) 1–11. https://doi.org/10.3389/fbioe.2020.00565.

[23] Y. Qin, P. Li, Int. J. Mol. Sci. 21 (2020) 499. https://doi.org/10.3390/ijms21020499.

[24] M. Gierszewska-Drużyńska, J. Ostrowska-Czubenko, Prog. Chem. Appl. Chitin Its Deriv. 20 (2015) 43–53. https://doi.org/10.15259/PCACD.20.04.

[25] D. Svirskis, A. Seyfoddin, S. Chalabi, J. H. I. Kim, C. Langford, S. Painter, R. Al-Kassas, Pharm. Dev. Technol. 19 (2014) 571–576. https://doi.org/10.3109/10837450.2013.813539.

[26] M. I. Wahba, Biotechnol. Prog. 34 (2018) 347–361. https://doi.org/10.1002/btpr.2587.

[27] S. K. Yong, M. Shrivastava, P. Srivastava, A. Kunhikrishnan, N. Bolan, Rev Environ Contam Toxicol. 233 (2015) 1-43. doi: 10.1007/978-3-319-10479-9_1

[28] W. Zeng, H. Hui, Z. Liu, Z. Chang, M. Wang, B. He, D. Hao, Carbohydr Polym. 258 (2021) 117684. DOI: 10.1016/j.carbpol.2021.117684

[29] C. Pan, J. Qian, C. Zhao, H. Yang, X. Zhao, H. Guo, Carbohydr Polym. 241 (2020) 116349. https://doi.org/10.1016/j.carbpol.2020.116349

[30] S. Durkut, Y. M. Elcin, A. E. Elcin, Artif Cells Blood Substit Immobil Biotechnol. 34 (2) (2006) 263–276.

[31] M. G. Žuža, B. M. Obradović, Z. D. Knežević-Jugović, Chem. Eng. Technol. 34 (2011) 1706–1714. https://doi.org/10.1002/ceat.201100297.

[32] M. M. Bradford, Anal. Biochem. 72 (1976) 248–254. https://doi: 10.1016/0003-2697(76)90527-3.

[33] G. Sarath, R. de la Motie, F. Wagner, in Proteolytic Enzymes: A Practical Approach, R. Beynon, J. Bond Editors, IRL Press, Oxford (1989), 25-56. ISBN 0-19-963058-5/963059-3.

[34] J. Adler-Nissen, Enzymatic hydrolysis of food proteins, Elsevier Applied Science Publishers, London and New York (1989), p 427.

[35] N. S. Rios, S. Arana-Peña, C. Mendez-Sanchez, Y. Lokha, V. Cortes-Corberan, L. R. B. Gonçalves, R. Fernandez-Lafuente, Catalysts. 9 (2019) 576. https://doi.org/10.3390/catal9070576.

[36] R. Austin, Enzyme Immobilization, ED-TECH PRESS, United Kingdom (2018), p. 181.

[37] L. N. Corîci, A. E. Frissen, D. J. Van Zoelen, I. F. Eggen, F. Peter, C. M. Davidescu, C. G. Boeriu, J. Mol. Catal. B: Enzym. 73 (2011) 90–97. https://doi.org/10.1016/j.molcatb.2011.08.004.

[38] L. Ferreira, M. A. Ramos, J. S. Dordick, M. H. Gil, J. Mol. Catal. B: Enzym. 21 (2003) 189–199. https://doi.org/10.1016/S1381-1177(02)00223-0.

[39] P. W. Tardioli, J. Pedroche, R. L. C. Giordano, R. Fernández-Lafuente, J. M. Guisán, Biotechnol. Prog. 19 (2003) 352–360. https://doi.org/10.1021/bp025588n.

[40] U. M. F. de Oliveira, L. J. B. Lima de Matos, M. C. M. de Souza, B. B. Pinheiro, J. C. S. dos Santos, L. R. B. Gonçalves, Appl. Biochem. Biotechnol. 184 (2018) 1263–1285. https://doi.org/10.1007/s12010-017-2622-1.

[41] S. D. Gür, N. İdil, N. Aksöz, Appl. Biochem. Biotechnol. 184 (2018) 538–552. https://doi.org/10.1007/s12010-017-2566-5.

[42] A. K. Sharma, B. A. Kikani, S. P. Singh, Int. J. Biol. Macromol. 153 (2020) 680–696. https://doi.org/10.1016/j.ijbiomac.2020.03.006.

[43] S. Ranjbari, A. Ayati, B. Tanhaei, A. Al-Othman, F. Karimi, Environ. Res. 204 (2022) 111961. https://doi.org/10.1016/j.envres.2021.111961.

[44] B. E. Abdelmalek, A. Sila, A. Haddar, A. Bougatef, M. A. Ayadi, Int. J. Biol. Macromol., 104 (2017) 953–962. https://doi.org/10.1016/j.ijbiomac.2017.06.107.

[45] S. Najavand, M. Habibnejad, A. R. Amani-Ghadim, P. Rahimizadeh, M. Pazhang, Biotechnol. Prog. 36 (2020) 2960. https://doi.org/10.1002/btpr.2960.

[46] M. A. A. Abdella, G. M. El-Sherbiny, A. R. El-Shamy, S. M. M. Atalla, S. A. Ahmed, Bull. Natl. Res. Cent. 44 (2020) 40. https://doi.org/10.1186/s42269-020-00301-3.

Downloads

Published

10.12.2024

Issue

Section

Articles

How to Cite

Alcalase immobilization onto chitosan/glutaraldehyde/tripolyphosphate beads obtained by inverse emulsion technique: Original scientific paper. (2024). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ240401037Z

Similar Articles

61-70 of 123

You may also start an advanced similarity search for this article.