EXPERIMENTAL STUDIES IN PLATE HEAT EXCHANGER USING THERMINOL-55/Al2O3 AND GLYCEROL/Al2O3 NANOFLUIDS

Original scientific paper

Authors

  • Periasamy Manikandan Srinivasan Department of Chemical Engineering, Kongu Engineering College, Erode-638 060, India
  • Nesakumar Dharmakkan Department of Chemical Engineering, Kongu Engineering College, Erode-638 060, India

DOI:

https://doi.org/10.2298/CICEQ240903035S

Keywords:

Al2O3, heat transfer, Therminol-55, glycerol, nano fluid, plate heat exchanger

Abstract

The experiment aimed to compare the heat transfer performance of two base fluids, Therminol-55 and glycerol, both mixed with aluminum oxide nanoparticles. The investigation focused on assessing how the addition of aluminum oxide nanoparticles (at concentrations of 0.1%, 0.2%, and 0.25% by volume) affected heat transfer in a plate heat exchanger using a mixture of Therminol-55/water and Glycerol/water. Results demonstrated a significant enhancement in heat transfer efficiency for both the hot and cold sides of the exchanger when using these nanoparticle-infused base fluid mixtures. Specifically, the study observed notably improved heat transfer coefficients for the Therminol-55/water mixture with a 0.25% nanoparticle concentration, achieving 3859 W/m²K (23% higher) for the hot fluid coefficient, 4195 W/m²K (31% higher) for the cold fluid coefficient, and an overall coefficient of 2310 W/m²K (23% higher). Similarly, the Glycerol/water mixture with a 0.25% nanoparticle concentration exhibited superior performance, reaching 4491 W/m²K (30% higher) for the hot fluid coefficient, 4395 W/m²K (36% higher)for the cold fluid coefficient, and an overall coefficient of 2508 W/m²K (28% higher). These findings indicate that the Glycerol/water mixture with aluminum oxide nanoparticles outperforms the Therminol-55/water counterpart, suggesting its potential to minimize temperature differentials within the heat exchanger and enhance operational effectiveness.

References

[1] S.U.S. Choi, S. Lee, S. Li, J.A. Eastman, J. Heat Transfer 121 (1999) 280—289. https://doi.org/10.1115/1.2825978.

[2] S.K. Das, N. Putra, P. Thiesen, W. Roetzel, J. Heat Transfer 125 (2003) 567—574. https://doi.org/10.1115/1.1571080.

[3] S.S. Sonawane, R. S., Khedkar, K.L.T. Wasewar, Int. Commun. Heat Mass Transfer 49 (2013) 60—68. https://doi.org/10.1016/j.icheatmasstransfer.2013.10.001.

[4] M.A. Sabiha, R. Saidur, S. Mekhilef, O. Mahian, Renewable Sustainable Energy Rev. 51 (2015) 1038—1054. https://doi.org/10.1016/j.rser.2015.07.016.

[5] S.P. Manikandan, N. Dharmakkan, S. Nagamani, Chem. Ind. Chem. Eng. Q. 28 (2022) 95—101. https://doi.org/10.2298/CICEQ210125021M.

[6] S.P. Manikandan, N. Dharmakkan, M.D. Sri Vishnu, H. Prasath, R. Gokul, Hem. Ind. 75 (2021) 341—352. https://doi.org/10.2298/HEMIND210520031S.

[7] S.P. Manikandan, N. Dharmakkan, M.D. Sri Vishnu, H. Prasath, R. Gokul, G. Thiyagarajan, G. Sivasubramani, B. Moulidharan, Chem. Ind. Chem. Eng. Q. 29 (2023) 225—233. https://doi.org/10.2298/CICEQ220430029S.

[8] M.M. Sarafraz, A.D. Baghi, M.R. Safaei, A.S. Leon, R. Ghomashchi, M. Goodarzi, C.X. Lin, Energies 12 (2019) 1—13. https://doi.org/10.3390/en12224327.

[9] W. Xu, S. Wang, Q. Zhang, Q., Wang, H. Lu, H. Tan, Appl. Therm. Eng. 95 (2016) 165—177. https://doi.org/10.1016/j.applthermaleng.2015.10.164.

[10] E. Abu-Nada, Int. J. Heat Fluid Flow 30 (2009) 489—500. https://doi.org/110.1016/j.ijheatfluidflow.2009.02.003,

[11] M.M. Sarafraz, A.D. Baghi, M.R. Safaei, A.S. Leon, R. Ghomashchi, M. Goodarzi, C.X. Lin, Energies 12 (2019) 1—13. https://doi.org/10.3390/en12224327.

[12] S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 27 (2021) 15—20. https://doi.org/10.2298/CICEQ191220020P.

[13] B. Sahin, E. Manay, E.F. Akyurek, J. Nanomater. 2015 (2015) 1—10. https://doi.org/10.1155/2015/790839.

[14] S. Hoseinzadeh, P.S. Heyns, H. Kariman, Int. J. Numer. Methods Heat Fluid Flow 30 (2020) 1149—116. https://doi.org/10.1108/HFF-06-2019-0485.

[15] S.P. Manikandan, P.K. Chinnusamy, R. Thangamani, S. Palaniraj, P. Ravichandran, S. Karuppasamy, Y.R. Sanmugam, Chem. Ind. Chem. Eng. Q. 30 (2024) 257—264. https://doi.org/10.2298/CICEQ230726028M.

[16] S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 27 (2021) 177—187. https://doi.org/10.2298/CICEQ200504036P.

[17] S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 24 (2018) 309—318. https://doi.org/10.2298/CICEQ170720003M.

[18] S.P. Manikandan, R. Baskar, Period. Polytech., Chem. Eng. 62 (2018) 317—322. https://doi.org/10.3311/PPch.11676.

[19] T. Maré, S. Halelfadl, O. Sow, P. Estellé, S. Duret, F. Bazantay, Exp. Therm. Fluid Sci. 35 (2011) 1535—1543. https://doi.org/10.1016/j.expthermflusci.2011.07.004.

[20] A. Munimathan, T. Sathish, V. Mohanavel, A. Karthick, R. Madavan, R. Subbiah, S. Rajkumar, Int. J. Photoenergy 1 (2021) 6680627. https://doi.org/10.1155/2021/6680627.

[21] M. M. Sarafraz, A. Dareh Baghi, M. R. Safaei, A.S. Leon, R. Ghomashchi, M. Goodarzi, C. Lin, Energies 12 (2019) 4327. https://doi.org/10.3390/en12224327.

[22] A. M. Hassaan, Heat Trans. Res. 53 (2022) 19—34. https://doi.org/10.1615/HeatTransRes.2022042147.

[23] A. M. Hassaan, Int. J. Therm. Sci. 177 (2022) 107569. https://doi.org/10.1016/j.ijthermalsci.2022.107569.

[24] A. M. Hassaan, Heat Trans. Res. 54 (2023) 1—16. https://doi.org/10.1615/HeatTransRes.2023045768.

[25] A. M. Hassaan, Proc. Inst. Mech. Eng., Part E 236 (2022) 2139—2146. https://doi.org/10.1177/09544089221086825.

[26] A. M. Hassaan, Proc. Inst. Mech. Eng., Part E 237 (2022) 1310—1318. https://doi.org/10.1177/09544089221113977.

[27] A. M. Hassaan, Heat Mass Transfer 60 (2024) 1211—1219. https://doi.org/10.1007/s00231-024-03487-8.

[28] M. M. Sarafraz, A. Dareh Baghi, M. R. Safaei, A.S. Leon, R. Ghomashchi, M. Goodarzi, C. Lin, Energies 12 (2019) 4327. https://doi.org/10.3390/en12224327.

[29] N. S. Sahid, M.M. Rahman, K. Kadirgama, M.A. Maleque, J. Mech. Eng. Sci. 11 (2017) 3087—3094. https://doi.org/10.15282/jmes.11.4.2017.11.0277.

[30] B. Barbés, R. Páramo, E. Blanco, M.J. Pastoriza-Gallego, M.M. Pineiro, J.L. Legido, C.J. Casanova, J. Therm. Anal. Calorim. 111 (2013) 1615—1625. https://doi.org/10.1007/s10973-012-2534-9.

[31] S.Z. Heris, T.H. Nassan, S.H. Noie, H. Sardarabadi, M. Sardarabadi, Int. J. Heat Fluid Flow 44 (2013) 375—382. https://doi.org/10.1016/j.ijheatfluidflow.2013.07.006.

[32] B. Mehta, D. Subhedar, Mater. Today: Proc. (2023). https://doi.org/10.1016/j.matpr.2023.09.142.

[33] M. A. Rahman, S. M. Hasnain, S. Pandey, A., Tapalova, N., Akylbekov, R. Zairov, ACS omega 9 (2024) 32328—32349. https://doi.org/10.1021/acsomega.4c03279.

[34] M. M. Arani, Micro and Nano Technologies (2024) 45—75. https://doi.org/10.1016/B978-0-443-13625-2.00003-6.

[35] R.S. Khedkar, A. Saikiram, S.S. Sonawane, K. Wasewar, S.S. Umre, Procedia Eng. 51 (2013) 342—346. https://doi.org/10.1016/j.proeng.2013.01.047.

[36] W. Yu, H. Xie, L. Chen, Y. Li, Colloids Surf., A 355 (2010) 109—113. https://doi.org/10.1016/j.colsurfa.2009.11.044.

Downloads

Published

01.12.2024 — Updated on 16.04.2025

Issue

Section

Articles

How to Cite

EXPERIMENTAL STUDIES IN PLATE HEAT EXCHANGER USING THERMINOL-55/Al2O3 AND GLYCEROL/Al2O3 NANOFLUIDS: Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly, 31(4), 277-284. https://doi.org/10.2298/CICEQ240903035S

Similar Articles

21-30 of 67

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)