Experimental studies in plate heat exchanger using Therminol-55 /Al2O3 and glycerol/Al2O3 nanofluids

Original scientific paper

Authors

  • Periasamy Manikandan Srinivasan Department of Chemical Engineering, Kongu Engineering College, Erode-638 060, India
  • Nesakumar Dharmakkan Department of Chemical Engineering, Kongu Engineering College, Erode-638 060, India

DOI:

https://doi.org/10.2298/CICEQ240903035S

Keywords:

Al2O3, heat transfer, Therminol-55, glycerol, nano fluid, plate heat exchanger

Abstract

The experiment aimed to compare the heat transfer performance of two base fluids, Therminol-55 and Glycerol, both mixed with aluminium oxide nanoparticle. The investigation focused on assessing how the addition of aluminium oxide nanoparticles (at concentrations of 0.1, 0.2 and 0.25 % by volume) affected heat transfer in a plate heat exchanger using a mixture of Therminol-55/water and glycerol/water. Results demonstrated a significant enhancement in heat transfer efficiency for both hot and cold sides of the exchanger when using these nanoparticle-infused base fluid mixtures. Specifically, the study observed notably improved heat transfer coefficients for the Therminol-55/water mixture with a 0.25 % nanoparticle concentration, achieving 3858.77 W/m² K (23 % higher) for the hot fluid coefficient, 4194.54 W/m² K (31 % higher) for the cold fluid coefficient, and an overall coefficient of 2310 W/m² K (23 % higher) . Similarly, the Glycerol/water mixture with a 0.25 % nanoparticle concentration exhibited superior performance, reaching 4491.23 W/m² K (30 % higher) for the hot fluid coefficient, 4394.54 W/m² K (35.5 % higher)for the cold fluid coefficient, and an overall coefficient of 2508 W/m²K (27.8 % higher). These findings indicate that the Glycerol/water mixture with aluminium oxide nanoparticles outperforms the Therminol-55/water counterpart, suggesting its potential to minimize temperature differentials within the heat exchanger and enhance operational effectiveness.

References

1. S.U.S. Choi, S. Lee, S. Li, J.A. Eastman, J. Heat Transfer 121 (1999) 280-289.

https://doi.org/10.1115/1.2825978.

2. S.K. Das, N. Putra, P. Thiesen, W. Roetzel, J. Heat Transfer 125 (2003) 567-574. https://doi.org/10.1115/1.1571080.

3. S.S. Sonawane, R. S., Khedkar, K.L.T. Wasewar, Int. Commun. Heat Mass Transfer 49 (2013) 60-68. https://doi.org/10.1016/j.icheatmasstransfer.2013.10.001.

4. M.A. Sabiha, R. Saidur, S. Mekhilef, O. Mahian, Renewable Sustainable Energy Rev. 51 (2015) 1038-1054. https://doi.org/10.1016/j.rser.2015.07.016.

5. S.P. Manikandan, N. Dharmakkan, S. Nagamani, Chem. Ind. Chem. Eng. Q. 28 (2022) 95-101. https://doi.org/10.2298/CICEQ210125021M

6. S.P. Manikandan, N. Dharmakkan, M.D. Sri Vishnu, H. Prasath, R. Gokul, Hem. Ind. 75 (2021) 341-352. https://doi.org/10.2298/HEMIND210520031S.

7. S.P. Manikandan, N. Dharmakkan, M.D. Sri Vishnu, H. Prasath, R. Gokul, G. Thiyagarajan, G. Sivasubramani, B. Moulidharan, Chem. Ind. Chem. Eng. Q. 29 (2023) 225-233. https://doi.org/10.2298/CICEQ220430029S

8. M.M. Sarafraz, A.D. Baghi, M.R. Safaei, A.S. Leon, R. Ghomashchi, M. Goodarzi, C.X. Lin, Energies 12 (2019) 1-13. https://doi.org/10.3390/en12224327

9. W. Xu, S. Wang, Q. Zhang, Q., Wang, H. Lu, H. Tan, Appl. Therm. Eng. 95 (2016) 165- 177. https://doi.org/10.1016/j.applthermaleng.2015.10.164.

10. E. Abu-Nada, Int. J. Heat Fluid Flow 30 (2009) 489-500. https://doi.org/110.1016/j.ijheatfluidflow.2009.02.003

11. M.M. Sarafraz, A.D. Baghi, M.R. Safaei, A.S. Leon, R. Ghomashchi, M. Goodarzi, C.X. Lin, Energies 12 (2019) 1-13. https://doi.org/10.3390/en12224327

12. S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 27 (2021) 15-20. https://doi.org/10.2298/CICEQ191220020P.

13. B. Sahin, E. Manay, E.F. Akyurek, J. Nanomater. 2015 (2015) 1-10. https://doi.org/10.1155/2015/790839

14. S. Hoseinzadeh, P.S. Heyns, H. Kariman, Int. J. Numer. Methods Heat Fluid Flow 30 (2020) 1149–116. https://doi.org/10.1108/HFF-06-2019-0485.

15. S.P. Manikandan, P.K. Chinnusamy, R. Thangamani, S. Palaniraj, P. Ravichandran, S. Karuppasamy, Y.R. Sanmugam, Chem. Ind. Chem. Eng. Q. 30 (2024) 257-264. https://doi.org/10.2298/CICEQ230726028M

16. S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 27 (2021) 177-187. https://doi.org/10.2298/CICEQ200504036P

17. S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 24 (2018) 309-318. https://doi.org/10.2298/CICEQ170720003M.

18. S.P. Manikandan, R. Baskar, Period. Polytech., Chem. Eng. 62 (2018) 317-322.

https://doi.org/10.3311/PPch.11676

19. T. Maré, S. Halelfadl, O. Sow, P. Estellé, S. Duret, F. Bazantay, Exp. Therm. Fluid Sci. 35 (2011) 1535-1543. https://doi.org/10.1016/j.expthermflusci.2011.07.004.

20. A. Munimathan, T. Sathish, V. Mohanavel, A. Karthick, R. Madavan, R. Subbiah, S. Rajkumar, Int. J. Photoenergy 1 (2021) 6680627. https://doi.org/10.1155/2021/6680627.

21. M. M. Sarafraz, A. Dareh Baghi, M. R. Safaei, A.S. Leon, R. Ghomashchi, M. Goodarzi, C. Lin, Energies 12 (2019) 4327. https://doi.org/10.3390/en12224327.

22. A. M. Hassaan, Heat Trans. Res. 53 (2022) 19 - 34. https://doi.org/10.1615/HeatTransRes.2022042147

23. A. M. Hassaan, Int. J. Therm. Sci. 177 (2022) 107569. https://doi.org/10.1016/j.ijthermalsci.2022.107569

24. A. M. Hassaan, Heat Trans. Res. 54 (2023) 1 - 16. https://doi.org/10.1615/HeatTransRes.2023045768

25. A. M. Hassaan, Proc. Inst. Mech. Eng., Part E 236 (2022) 2139-2146. https://doi.org/10.1177/09544089221086825

26. A. M. Hassaan, Proc. Inst. Mech. Eng., Part E 237 (2022) 1310-1318. https://doi.org/10.1177/09544089221113977

27. A. M. Hassaan, Heat Mass Transfer 60 (2024) 1211-1219. https://doi.org/10.1007/s00231-024-03487-8

28. M. M. Sarafraz, A. Dareh Baghi, M. R. Safaei, A.S. Leon, R. Ghomashchi, M. Goodarzi, C. Lin, Energies 12 (2019) 4327. https://doi.org/10.3390/en12224327.

29. N. S. Sahid, M.M. Rahman, K. Kadirgama, M.A. Maleque, J. Mech. Eng. Sci. 11 (2017) 3087- 3094. https://doi.org/10.15282/jmes.11.4.2017.11.0277

30. B. Barbés, R. Páramo, E. Blanco, M.J. Pastoriza-Gallego, M.M. Pineiro, J.L. Legido, C.J. Casanova, J. Therm. Anal. Calorim. 111 (2013) 1615- 1625. https://doi.org/10.1007/s10973-012-2534-9

31. S.Z. Heris, T.H. Nassan, S.H. Noie, H. Sardarabadi, M. Sardarabadi, Int. J. Heat Fluid Flow 44 (2013) 375 – 382. https://doi.org/10.1016/j.ijheatfluidflow.2013.07.006.

32. B. Mehta, D. Subhedar, Mater. Today: Proc. (2023). https://doi.org/10.1016/j.matpr.2023.09.142

33. M. A. Rahman, S. M. Hasnain, S. Pandey, A., Tapalova, N., Akylbekov, R. Zairov, ACS omega 9 (2024) 32328-32349. https://doi.org/10.1021/acsomega.4c03279

34. M. M. Arani, Micro and Nano Technologies (2024) 45 - 75. https://doi.org/10.1016/B978-0-443-13625-2.00003-6

35. R.S. Khedkar, A. Saikiram, S.S. Sonawane, K. Wasewar, S.S. Umre, Procedia Eng. 51 (2013) 342-346. https://doi.org/10.1016/j.proeng.2013.01.047

36. W. Yu, H. Xie, L. Chen, Y. Li, Colloids Surf., A 355 (2010) 109-113. . https://doi.org/10.1016/j.colsurfa.2009.11.044

Downloads

Published

01.12.2024

Issue

Section

Articles

How to Cite

Experimental studies in plate heat exchanger using Therminol-55 /Al2O3 and glycerol/Al2O3 nanofluids: Original scientific paper. (2024). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ240903035S

Similar Articles

11-20 of 64

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)