Experimental studies in plate heat exchanger using Therminol-55 /Al2O3 and glycerol/Al2O3 nanofluids
Original scientific paper
DOI:
https://doi.org/10.2298/CICEQ240903035SKeywords:
Al2O3, heat transfer, Therminol-55, glycerol, nano fluid, plate heat exchangerAbstract
The experiment aimed to compare the heat transfer performance of two base fluids, Therminol-55 and Glycerol, both mixed with aluminium oxide nanoparticle. The investigation focused on assessing how the addition of aluminium oxide nanoparticles (at concentrations of 0.1, 0.2 and 0.25 % by volume) affected heat transfer in a plate heat exchanger using a mixture of Therminol-55/water and glycerol/water. Results demonstrated a significant enhancement in heat transfer efficiency for both hot and cold sides of the exchanger when using these nanoparticle-infused base fluid mixtures. Specifically, the study observed notably improved heat transfer coefficients for the Therminol-55/water mixture with a 0.25 % nanoparticle concentration, achieving 3858.77 W/m² K (23 % higher) for the hot fluid coefficient, 4194.54 W/m² K (31 % higher) for the cold fluid coefficient, and an overall coefficient of 2310 W/m² K (23 % higher) . Similarly, the Glycerol/water mixture with a 0.25 % nanoparticle concentration exhibited superior performance, reaching 4491.23 W/m² K (30 % higher) for the hot fluid coefficient, 4394.54 W/m² K (35.5 % higher)for the cold fluid coefficient, and an overall coefficient of 2508 W/m²K (27.8 % higher). These findings indicate that the Glycerol/water mixture with aluminium oxide nanoparticles outperforms the Therminol-55/water counterpart, suggesting its potential to minimize temperature differentials within the heat exchanger and enhance operational effectiveness.
References
1. S.U.S. Choi, S. Lee, S. Li, J.A. Eastman, J. Heat Transfer 121 (1999) 280-289.
https://doi.org/10.1115/1.2825978.
2. S.K. Das, N. Putra, P. Thiesen, W. Roetzel, J. Heat Transfer 125 (2003) 567-574. https://doi.org/10.1115/1.1571080.
3. S.S. Sonawane, R. S., Khedkar, K.L.T. Wasewar, Int. Commun. Heat Mass Transfer 49 (2013) 60-68. https://doi.org/10.1016/j.icheatmasstransfer.2013.10.001.
4. M.A. Sabiha, R. Saidur, S. Mekhilef, O. Mahian, Renewable Sustainable Energy Rev. 51 (2015) 1038-1054. https://doi.org/10.1016/j.rser.2015.07.016.
5. S.P. Manikandan, N. Dharmakkan, S. Nagamani, Chem. Ind. Chem. Eng. Q. 28 (2022) 95-101. https://doi.org/10.2298/CICEQ210125021M
6. S.P. Manikandan, N. Dharmakkan, M.D. Sri Vishnu, H. Prasath, R. Gokul, Hem. Ind. 75 (2021) 341-352. https://doi.org/10.2298/HEMIND210520031S.
7. S.P. Manikandan, N. Dharmakkan, M.D. Sri Vishnu, H. Prasath, R. Gokul, G. Thiyagarajan, G. Sivasubramani, B. Moulidharan, Chem. Ind. Chem. Eng. Q. 29 (2023) 225-233. https://doi.org/10.2298/CICEQ220430029S
8. M.M. Sarafraz, A.D. Baghi, M.R. Safaei, A.S. Leon, R. Ghomashchi, M. Goodarzi, C.X. Lin, Energies 12 (2019) 1-13. https://doi.org/10.3390/en12224327
9. W. Xu, S. Wang, Q. Zhang, Q., Wang, H. Lu, H. Tan, Appl. Therm. Eng. 95 (2016) 165- 177. https://doi.org/10.1016/j.applthermaleng.2015.10.164.
10. E. Abu-Nada, Int. J. Heat Fluid Flow 30 (2009) 489-500. https://doi.org/110.1016/j.ijheatfluidflow.2009.02.003
11. M.M. Sarafraz, A.D. Baghi, M.R. Safaei, A.S. Leon, R. Ghomashchi, M. Goodarzi, C.X. Lin, Energies 12 (2019) 1-13. https://doi.org/10.3390/en12224327
12. S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 27 (2021) 15-20. https://doi.org/10.2298/CICEQ191220020P.
13. B. Sahin, E. Manay, E.F. Akyurek, J. Nanomater. 2015 (2015) 1-10. https://doi.org/10.1155/2015/790839
14. S. Hoseinzadeh, P.S. Heyns, H. Kariman, Int. J. Numer. Methods Heat Fluid Flow 30 (2020) 1149–116. https://doi.org/10.1108/HFF-06-2019-0485.
15. S.P. Manikandan, P.K. Chinnusamy, R. Thangamani, S. Palaniraj, P. Ravichandran, S. Karuppasamy, Y.R. Sanmugam, Chem. Ind. Chem. Eng. Q. 30 (2024) 257-264. https://doi.org/10.2298/CICEQ230726028M
16. S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 27 (2021) 177-187. https://doi.org/10.2298/CICEQ200504036P
17. S.P. Manikandan, R. Baskar, Chem. Ind. Chem. Eng. Q. 24 (2018) 309-318. https://doi.org/10.2298/CICEQ170720003M.
18. S.P. Manikandan, R. Baskar, Period. Polytech., Chem. Eng. 62 (2018) 317-322.
https://doi.org/10.3311/PPch.11676
19. T. Maré, S. Halelfadl, O. Sow, P. Estellé, S. Duret, F. Bazantay, Exp. Therm. Fluid Sci. 35 (2011) 1535-1543. https://doi.org/10.1016/j.expthermflusci.2011.07.004.
20. A. Munimathan, T. Sathish, V. Mohanavel, A. Karthick, R. Madavan, R. Subbiah, S. Rajkumar, Int. J. Photoenergy 1 (2021) 6680627. https://doi.org/10.1155/2021/6680627.
21. M. M. Sarafraz, A. Dareh Baghi, M. R. Safaei, A.S. Leon, R. Ghomashchi, M. Goodarzi, C. Lin, Energies 12 (2019) 4327. https://doi.org/10.3390/en12224327.
22. A. M. Hassaan, Heat Trans. Res. 53 (2022) 19 - 34. https://doi.org/10.1615/HeatTransRes.2022042147
23. A. M. Hassaan, Int. J. Therm. Sci. 177 (2022) 107569. https://doi.org/10.1016/j.ijthermalsci.2022.107569
24. A. M. Hassaan, Heat Trans. Res. 54 (2023) 1 - 16. https://doi.org/10.1615/HeatTransRes.2023045768
25. A. M. Hassaan, Proc. Inst. Mech. Eng., Part E 236 (2022) 2139-2146. https://doi.org/10.1177/09544089221086825
26. A. M. Hassaan, Proc. Inst. Mech. Eng., Part E 237 (2022) 1310-1318. https://doi.org/10.1177/09544089221113977
27. A. M. Hassaan, Heat Mass Transfer 60 (2024) 1211-1219. https://doi.org/10.1007/s00231-024-03487-8
28. M. M. Sarafraz, A. Dareh Baghi, M. R. Safaei, A.S. Leon, R. Ghomashchi, M. Goodarzi, C. Lin, Energies 12 (2019) 4327. https://doi.org/10.3390/en12224327.
29. N. S. Sahid, M.M. Rahman, K. Kadirgama, M.A. Maleque, J. Mech. Eng. Sci. 11 (2017) 3087- 3094. https://doi.org/10.15282/jmes.11.4.2017.11.0277
30. B. Barbés, R. Páramo, E. Blanco, M.J. Pastoriza-Gallego, M.M. Pineiro, J.L. Legido, C.J. Casanova, J. Therm. Anal. Calorim. 111 (2013) 1615- 1625. https://doi.org/10.1007/s10973-012-2534-9
31. S.Z. Heris, T.H. Nassan, S.H. Noie, H. Sardarabadi, M. Sardarabadi, Int. J. Heat Fluid Flow 44 (2013) 375 – 382. https://doi.org/10.1016/j.ijheatfluidflow.2013.07.006.
32. B. Mehta, D. Subhedar, Mater. Today: Proc. (2023). https://doi.org/10.1016/j.matpr.2023.09.142
33. M. A. Rahman, S. M. Hasnain, S. Pandey, A., Tapalova, N., Akylbekov, R. Zairov, ACS omega 9 (2024) 32328-32349. https://doi.org/10.1021/acsomega.4c03279
34. M. M. Arani, Micro and Nano Technologies (2024) 45 - 75. https://doi.org/10.1016/B978-0-443-13625-2.00003-6
35. R.S. Khedkar, A. Saikiram, S.S. Sonawane, K. Wasewar, S.S. Umre, Procedia Eng. 51 (2013) 342-346. https://doi.org/10.1016/j.proeng.2013.01.047
36. W. Yu, H. Xie, L. Chen, Y. Li, Colloids Surf., A 355 (2010) 109-113. . https://doi.org/10.1016/j.colsurfa.2009.11.044
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Periasamy Manikandan Srinivasan, Nesakumar Dharmakkan
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.