Advancements in phytomass-derived activated carbon for applications in energy storage systems

Original scientific paper

Authors

  • Kalyani Palanichamy Department of Chemistry, DDE, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India
  • Banuprabha Thakku Rangachari Department of Chemistry, Mary Matha College of Arts and Science, Periyakulam, Tamil Nadu, India
  • Sridhar Jayavel Department of Biotechnology, DDE, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India
  • Aravind Dhandapani University Science Instrumentation Centre, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India
  • Varagunapandiyan Natarajan Department of Chemical Engineering, King Khalid University, Abha, 61421, Saudi Arabia

DOI:

https://doi.org/10.2298/CICEQ240526034P

Keywords:

Activated carbon, phytomass, heteroatoms, supercapacitors, self-doped heteroatoms, circular bioeconomy

Abstract

Phytomass, i.e. plant biomass-derived active carbon is a versatile electrode material for energy devices owing to their natural and ubiquitous abundance, variety, ecocentrism and unique physical properties. This article intricately reviews the recent advancements in phytomass derived activated carbon (PAC), chiefly for the supercapacitor electrodes and notably, phytomass including different parts of the plants limited to, stem, leaf, flower, seed, fruit and root for deriving ACs bestowed with excellent electrochemical performance have been considered. Advancement in the preparation of AC from phytomass, important facts associated with synthesis, physical and electrochemical attributes have also been elaborated, which is expected to furnish a fruitful direction towards advocating supercapacitors – the green energy packs. Surface of PAC is usually decorated with organic functional moieties containing heteroatoms like O, &/or S/N (referred to as self-doped heteroatoms). The synergy of these heteroatoms in enhancing the pseudocapacitance of the PAC electrodes in supercapacitors has also been featured. Further, the review provokes insights on strategies, prominent challenges, prospects and imminent opportunities and hopeful trend in support of AC from various plant parts that may power our energy-based society, scientific industries and in establishing sustainable energy sector as well by harnessing Nature’s potential.

References

1. P. Lauri, P. Havlík, G. Kindermann, N. Forsell, H. Böttcher, M. Obersteiner, Energy Policy 66 (2014) 19-31. https://doi.org/10.1016/j.enpol.2013.11.033.

2. V. Lebaka, in Biofuel Technologies, V. Gupta, M.G. Tuohy Eds., Springer, Berlin (2013), p. 223. https://doi.org/10.1007/978-3-642-34519-7_9

3. P. McKendry, Bioresour. Technol. 83 (2002) 47-54. https://doi.org/10.1016/S0960-8524(01)00119-5

4. M. Kaltschmitt, in Renewable Energy from Biomass, M. Kaltschmitt, N.J. Themelis, L.Y. Bronicki, L. Söder, L.A. Vega Eds., Springer, New York (2013) p. 1393. https://doi.org/10.1007/978-1-4614-5820-3_924

5. WBA, WBA Global bioenergy statistics 2018, Summary Report, World Bioenergy Association, www.worldenergy.org (2018). https://www.worldbioenergy.org/uploads/181017%20WBA%20GBS%202018_Summary_hq.pdf

6. S.D. Vassilev, L. Andersen, C. Vassileva, T. Morgan, Fuel 94 (2012) 1-33. https://doi.org/10.1016/j.fuel.2011.09.030.

7. J. Popp, S. Kovács, J. Oláh, Z. Divéki, E. Balázs, New Biotechnol. 60 (2021) 76–84. https://doi.org/10.1016/j.nbt.2020.10.004

8. A. Tursi, Biofuel Res. J. 22 (2019) 962-979. https://doi.org/10.18331/BRJ2019.6.2.3.

9. T.H. Kim, H. Kwak, T.H. Kim, K.K. Oh, Energies 13 (2020) 352. https://doi.org/10.3390/en13020352

10. T. Temesgen, Y. Dessie, E. Tilahun, L.T. Tufa, B.A. Gonfa, T.A. Hamdalla, C.R. Ravikumar, and H.C. Ananda Murthy, ACS Omega, 9 (2024) 30725−30736. https://doi.org/10.1021/acsomega.4c03123

11. J. Amrita, S.K. Tripathi, Mater. Sci. Eng., B 183 (2014) 54-61. https://doi.org/10.1016/j.mseb.2013.12.004

12. S.J. Allen, L. Whitten, G. McKay, Dev. Chem. Eng. Miner. Process. 6 (1998) 231-261. https://doi.org/10.1002/apj.5500060501

13. O. Ioannidou, A. Zabaniotou, Renewable Sustainable Energy Rev. 11 (2007) 1966–2005. https://doi.org/10.1016/j.rser.2006.03.013

14. W. Ao, J. Fu, X. Mao, Q. Kang, C. Ran, Y. Liu, H. Zhang, Z. Gao, J. Li, G. Liu, J. Dai, Renewable Sustainable Energy Rev. 92 (2018) 958–979. https://doi.org/10.1016/j.rser.2018.04.051

15. E. Menya, P.W. Olupot, H. Storz, M. Lubwama, Y. Kiros, Chem. Eng. Res. Des. 129 (2017) 271-296. https://doi.org/10.1016/j.cherd.2017.11.008

16. N.A Rashidi, S. Yusup, J. Cleaner Prod. 129 (2017) 271-296. https://doi.org/10.1016/j.jclepro.2017.09.045

17. H. Lee, K. An, S. Park, B. Kim, Nanomaterials 9 (2019) 608. https://doi.org/10.3390/nano9040608

18. Z. Z. Chowdhury, S.B.A. Hamid, R. Das, M.R Hasan, S.M. Zain, K. Khalid, M.N. Uddin, BioResources 8 (2013) 6523-6555. https://doi.org/10.15376/biores.8.4.6523-6555

19. P.G. García, Renewable Sustainable Energy Rev. 82 (2018) 1393-1414. http://dx.doi.org/10.1016/j.rser.2017.04.117

20. A. El-Naggar, A.H. El-Naggar, S.M. Shaheen, B. Sarkar, S.X. Chang, D.C. W. Tsang, J. Rinklebee, Y.S. Ok, J. Environ. Manage. 241 (2019) 458-467. https://doi.org/10.1016/j.jenvman.2019.02.044

21. A. Aworn, P. Thiravetyan, W. Nakbanpote, J. Anal. Appl. Pyrolysis 82 (2008) 279–285. https://doi.org/ 10.1016/j.jaap.2008.04.007

22. S. Balci, T. Dogu, H. Yucel, J. Chem. Technol. Biotechnol. 60 (1994) 419-426. https://doi.org/10.1002/jctb.280600413

23. M.A. Yahya, Z. Al-Qodah, C.Z. Ngah, Renewable Sustainable Energy Rev. 46 (2015) 218–235. https://doi.org/10.1016/j.rser.2015.02.051

24. M.I. Din, S. Ashraf, A. Intisar, Sci. Prog. 100 (2017) 299-312. https://doi.org/10.3184/003685017X14967570531606

25. A. Ahmad, H.M. Al-Swaidan, A.H. Alghamdi, J. Chem. Soc. Pak. 37 (2015) 1081-1087. https://jcsp.org.pk/PublishedVersion/da1050bc-8125-4cdc-ac13-985f52ab3159Manuscript%20no%202,%20Final%20Gally%20Proof%20of%2010561%20(Hassan%20Mohammed%20Al-Swaidan).pdf

26. O.A. Ekpete, M. Horsfall, J.N.R, Res. J. Chem. Sci. 3 (2011) 10-17. https://www.researchgate.net/publication/281212790_Preparation_and_characterization_of_activated_carbon_derived_from_fluted_pumpkin_stem_waste

27. V.K. Gupta, D. Pathania, S. Sharma, P. Singh, J. Colloid Interface Sci. 401 (2013) 125–132. https://doi.org/10.1016/j.jcis.2013.03.020

28. M. Fan, W. Marshall, D. Daugaard, R.C. Brown, Bioresour. Technol. 93 (2004) 103–107. https://doi.org/10.1016/j.biortech.2003.08.016

29. V. Minkova, M. Razvigorova, E. Bjornbom, R. Zanzi, T. Budinova, N. Petrov, Fuel Process Technol. 70 (2001) 53–61. https://doi.org/10.1016/S0378-3820(00)00153-3

30. J. Li, Y.Gao, K. Han, J. Qi, M. Li, Z. Teng, Sci Rep 9 (2019) 17270 doi: 10.1038/s41598-019-53869-w

31. S.Ghosh, , R. Santhosh, , S. Jeniffer, , V. Raghavan, , G. Jacob, , K. Nanaji, P. Kollu, S. K. Jeong, A. N. Grace, Sci Rep 9 (1) (2019) https://doi.org/10.1038/s41598-019-52006-x

32. N. Kumar, S.B. Kim, S.Y. Lee,S.J. Park, Nanomaterials (Basel) (2022) 12(20) 3708.doi: 10.3390/nano12203708

33. J.Yu, N. Fu, , J. Zhao, , R. Liu, , F. Li, , Y. Du, Z Yang, ACS Omega (2019) https://pubs.acs.org/doi/10.1021/acsomega.9b01916

34. M.I.A. Abdel Maksoud, R.A. Fahim, A.E. Shalan, M.A. Elkodous, S.O. Olojede, A.I. Osman, C. Farrell, H. Al Muhtase, A. S. Awed, A. H. Ashour, D.W. Rooney, Environ Chem Lett 19 (2021) 375–439. https://doi.org/10.1007/s10311-020-01075-w

35. B. Arumugam, G. Mayakrishnan, S.K.S. Manickavasagam, S.C. Kim, R. Vanaraj, Crystals 13 (7) (2023), 1118. https://doi.org/10.3390/cryst13071118

36. M. Li, Y. Fang, J. Li, B. Sun, J. Du, Q. Liu, Mater Lett, 318 (2022) 132182

https://doi.org/10.1016/j.matlet.2022.132182

37. K. Dujearic-Stephane, , M. Gupta, , A. Kumar, , V. Sharma, , S. Pandit, , P. Bocchetta, Y. Kumar, J Compos Sci, 5(3) (2021) 66. https://doi.org/10.3390/jcs5030066

38. T.Temesgen, E.T. Bekele, B.A. Gonfa, L.T. Tufa, F.K. Sabir, S. Tadesse, Y. Dessie, J EnergyStorage 73 (2023) 109293, 1-23. https://doi.org/10.1016/j.est.2023.109293

39. J. Zhao, A. Burke, J. Energy Chem. 59 (2021) 276-291. https://doi.org/10.1016/j.jechem.2020.11.013

40. K. Mensah-Darkwa, C. Zequine, P.K. Kahol, R.K Gupta, Sustainability 11 (2019) 1-22. https://doi.org/10.3390/su11020414

41. Y. Zhang, S. Liu, X. Zheng, X. Wang, Y. Xu, H. Tang, F. Kang, Q.H. Yang, J. Luo, Adv. Funct. Mater. 27 (2016) 1-8. https://doi.org/10.1002/adfm.201604687

42. X. He, P. Ling, J. Qiu, M. Yu, X. Zhang, C. Yu, M. Zheng, J. Power Sources 240 (2013) 109-113. https://doi.org/10.1016/j.jpowsour.2013.03.174

43. X. Xia, H. Liu, L. Shi, Y. He, J. Mater. Eng. Perform. 21 (2012) 1956–1961. https://doi.org/10.1007/s11665-011-0101-3

44. N. Sudhan, K. Subramani, M. Karnan, N. Ilayaraja, M. Sathish, Energy Fuels 31 (2016) 977-985. https://doi.org/10.1021/acs.energyfuels.6b01829

45. L. Xueliang, H. Changlong, C. Xiangying, S. Chengwu, Microporous Mesoporous Mater. 131 (2010) 303-309. https://doi.org/10.1016/j.micromeso.2010.01.007

46. X. Tian, H. Ma, Z. Li, S. Yan, L. Ma, F. Yu, G. Wang, X. Guo, Y. Ma, C. Wong, J. Power Sources 359 (2017) 88-96. https://doi.org/10.1016/j.jpowsour.2017.05.054

47. C. Wang, D. Wu, H. Wang, Z. Gao, F. Xu, K. Jiang, J. Mater. Chem. A 6 (2017) 1244-1254. https://doi.org/10.1039/C7TA07579K

48. S. Yan, J. Lin, P. Liu, Z. Zhao, J. Lian, W. Chang, L. Yao, Y. Liu, H. Lin, S. Han, RSC Adv. 8 (2018) 6806-6813. https://doi.org/10.1039/C7RA13013A

49. C. Wang, D. Wu, H. Wang, Z. Gao, F. Xu, K. Jiang, J. Power Sources 363 (2017) 375-383. https://doi.org/10.1016/j.jpowsour.2017.07.097

50. J. Phiri, J. Dou, T. Vuorinen, P.A.C. Gane, T.C. Maloney, ACS Omega 4 (2019) 18108-18117. https://doi.org/10.1021/acsomega.9b01977

51. C. Peng, X. Yan, R. Wang, J. Lang, Y. Oub, Q. Xue, Electrochim. Acta 87 (2013) 401– 408. https://doi.org/10.1016/j.electacta.2012.09.082

52. D. Jain, J. Kanungo, S.K. Tripathi, J. Alloys Compd. 832 (2020) 1-13. https://doi.org/10.1016/j.jallcom.2020.154956

53. S. Qu, J. Wan, C. Dai, T. Jin, F. Ma, J. Alloys Compd. 751 (2018) 107-116. https://doi.org/10.1016/j.jallcom.2018.04.123

54. S. Ahmed, M. Parvaz, R. Johari, M. Rafat, Mater. Res. Express 5 (2018) 1-10. http:// doi.org/10.1088/2053-1591/aab924

55. R. Wang, P. Wang, X. Yan, J. Lang, C. Peng, Q. Xue, ACS Appl. Mater. Interfaces 4 (2012) 5800-5806. https://doi.org/10.1021/am302077c

56. Y. T. Li, Y. T. Pi, L. M. Lu, S. H. Xu, T.Z. Ren, J. Power Sources 299 (2015) 519-528. https://doi.org/10.1016/j.jpowsour.2015.09.039

57. W. Fan, H. Zhang, H. Wang, X. Zhao, S. Sun, J. Shi, M. Huang, W. Liu, Y. Zheng, P. Li, RSC Adv. 9 (2019) 32382–32394. https://doi.org/10.1039/C9RA06914C

58. A. Khan, R.A. Senthil, J. Pan, Y. Sun, X. Liu, Batteries Supercaps 3 (2020) 731-737. https://doi.org/10.1002/batt.202000046

59. P. Veerakumar, T. Maiyalagan, B. Gnana Sundara Raj, K. Guruprasad, Z. Jiang, K.C. Lin, Arab. J. Chem. 13 (2020) 2995-3007. https://doi.org/10.1016/j.arabjc.2018.08.009

60. J. Chang, Z. Gao, X. Wang, D. Wu, F. Xu, X. Wang, Y. Guo, K. Jiang, Electrochim. Acta 157 (2015) 290–298. https://doi.org/10.1016/j.electacta.2014.12.169

61. H. Chen, F. Yu, G. Wang, L. Chen, B. Dai, S. Peng, ACS Omega 3 (2018) 4724−4732. https://doi.org/10.1021/acsomega.8b00210

62. F. Wu, J. Gao, X. Zhai, M. Xie, Y. Sun, H. Kang, Q. Tian, H. Qiu, Carbon 147 (2019) 242-251. https://doi.org/10.1016/j.carbon.2019.02.072

63. M. Sivachidambaram, J.J. Vijaya, L.J. Kennedy, R. Jothiramalingam, H.A. Al-Lohedan, M.A. Munusamy, E. Elanthamilan, J.P. Merlin, New J. Chem. 41 (2017) 3939-3949. https://doi.org/10.1039/C6NJ03867K

64. A. Elmouwahidi, Z. Zapata-Benabithe, F. Carrasco-Marın, C. Moreno-Castilla, Bioresour. Technol. 111 (2012) 185–190. https://doi.org/10.1016/j.biortech.2012.02.010

65. X. Li, W. Xing, S. Zhuo, J. Zhou, F. Li, S.Z. Qiao, G.Q. Lu, Bioresour. Technol. 102 (2011) 1118–1123. https://doi.org/10.1016/j.biortech.2010.08.110

66. C.C. Hu, C.C. Wang, F.C. Wu, R.L. Tseng, Electrochim. Acta 52 (2007) 2498-2505. https://doi.org/10.1016/j.electacta.2006.08.061

67. M. Olivares-Marin, J.A. Fernandez, M.J. Lazaro, C. Fernandez-Gonzalez, A. Macias-Garcia, V. Gomez-Serrano, F. Stoeckli, T.A. Centeno, Mater. Chem. Phys. 114 (2009) 323-327. https://doi.org/10.1016/j.matchemphys.2008.09.010

68. P. Kalyani, A. Anitha, Int. J. Res. Eng. Technol. 3 (2014) 225-238. https://doi.org/10.15623/ijret.2014.0309036

69. P. Kalyani, A. Anitha, A. Darchen, Int. J. Eng. Sci. Res. Technol. 4 (2015) 110-122.

https://www.ijesrt.com/Old_IJESRT/issues%20pdf%20file/Archives-2015/January-2015/16_OBTAINING%20ACTIVATED%20CARBON%20FROM%20PAPAYA%20SEEDS%20FOR%20ENERGY%20STORAGE%20DEVICES.pdf

70. L. Guardia, L. Suárez, N. Querejeta, R.R. Madrera, B. Suárez, T.A. Centeno, ACS Sustain. Chem. Eng. 7 (2019) 17335–17343. https://doi.org/10.1021/acssuschemeng.9b04266

71. C.K. Ranaweera, P.K. Kahol, M. Ghimire, S.R. Mishra, R.K. Gupta, C 3 (2017) 1-17. https://doi.org/10.3390/c3030025

72. E. Taer, A. Apriwandi, Y.S. Ningsih, R. Taslim, Agustino, Int. J. Electrochem. Sci. 14 (2019) 2462 – 2475. https://doi.org/10.20964/2019.03.17

73. M. Vinayagam, R.S. Babu, A. Sivasamy, A.L. Ferreira de Barros, Biomass Bioenergy 143 (2020) 1-8. https://doi.org/10.1016/j.biombioe.2020.105838

74. E. Elaiyappillai, R. Srinivasan, Y. Johnbosco, P. Devakumar, K. Murugesan, K. Kesavan, P.M. Johnson, Appl. Surf. Sci. 486 (2019) 527-538. https://doi.org/10.1016/j.apsusc.2019.05.004

75. Y. Wang, L. Zhao, H.Peng, X. Dai, X. Liu, G. Ma, Z. Lei, Ionics 25 (2019) 4315–4323. https://doi.org/10.1007/s11581-019-02966-x

76. N. Guo, M. Li, Y. Wang, X. Sun, F. Wang, R. Yang, ACS Appl. Mater. Interfaces 8 (2016) 33626–33634. https://doi.org/10.1021/acsami.6b11162

77. A. Gopalakrishnan, S. Badhulika, J. Power Sources 480 (2020) 1-17. https://doi.org/10.1016/j.jpowsour.2020.228830

78. Z. Li, Z. Xu, X. Tan, H. Wang, C.M. BHolt, T. Stephenson, B.C. Olsen, D. Mitlin, Energy Environ. Sci. 6 (2013) 871–878. https://doi.org/10.1039/C2EE23599D

79. D. Zhang, L. Zheng, Y. Ma, L. Lei, Q. Li, Y. Li, H. Luo, H. Feng, Y. Hao, ACS Appl. Mater. Interface, 6 (2014) 2657–2665.

https://doi.org/10.1021/am405128j

80. M. Seredych, T.J. Bandosz, J. Mater. Chem. A 1 (2013) 11717–11727. https://doi.org/10.1039/C3TA12252B

81. T.K. Enock, C.K. King’ondu, A. Pogrebnoi, Y.A.C. Jande, Int. J. Electrochem. 2017 (2017) 1-14. https://doi.org/10.1155/2017/6453420

82. M. Toda, A. Takagaki, M. Okamura, J.N. Kondo, S. Hayashi, K. Domen, M. Hara, Nature 438 (2005) 178. https://doi.org/10.1038/438178a

83. A. Macias-Garcia, C. Valenzuela-Calahorro, A. Espinosa-Man-silla, A. Bernalte-Garcia, V. Gomez-Serrano, Carbon 42 (2004) 1755–1764. https://doi.org/10.1016/j.carbon.2004.03.009

84. G. Hasegawa, M. Aoki, K. Kanamori, K. Nakanishi, T. Hanada, K. Tadanaga, J. Mater. Chem. 21 (2011) 2060–2063. https://doi.org/10.1039/C0JM03793A

85. J.A. Macia-Agullo, M. Sevilla, M.A. Diez, A.B. Fuertes, ChemSusChem. 3 (2010) 1352–1354. https://doi.org/10.1002/cssc.201000308

86. W. Kiciński, M. Szala, M. Bystrzejewski, Carbon 68 (2014) 1–32. https://doi.org/10.1016/j.carbon.2013.11.004

87. Z. Wan, Y. Sun, Tang, C.W. Daniel, D. Hou, X. Cao, S. Zhang, B. Gao, Y.S. Ok, Green Chem. 22 (2020) 2688–2711. https://doi.org/10.1039/d0gc00717j

88. W. Gu, M. Sevilla, A. Magasinski, A.B. Fuertes, G. Yushin, Energy Environ. Sci. 6 (2013) 2465–2476. https://doi.org/10.1039/C3EE41182F

89. X. Ma, G. Ning, Y. Kan, Y. Ma, C. Qi, B. Chen, Electrochim. Acta 150 (2014)108–113. https://doi.org/10.1016/j.electacta.2014.10.128

90. S. Liu, Y. Cai, X. Zhao, Y. Liang, M. Zheng, H. Hu, Y. Li, X. Lan, J. Gao, J. Power Sources 360 (2017) 373–382. https://doi.org/10.1016/j.jpowsour.2017.06.029

91. S. Yaglikci, Y. Gokce, E. Yagmur, Z. Aktas, Environ. Technol. 41 (2019) 36-48. https://doi.org/10.1080/09593330.2019.1575480

92. X. Zhao, Q. Zhang, C.M. Chen, B. Zhang, S. Reiche, A. Wang, T. Zhang, R. Schlogla, D.S. Sua, Nano Energy 1 (2012) 624-630. https://doi.org/10.1016/j.nanoen.2012.04.003

93. D. Lozano-Castello, D. Cazorla-Amoros, A. Linares-Solano, S. Shiraishi, H. Kurihara, A. Oya, Carbon 41 (2003) 1765-1775. https://doi.org/10.1016/S0008-6223(03)00141-6

94. J. Conder, K. Fic, C.M. Ghimbeu, in Char and Carbon Materials Derived from Biomass, M. Jeguirim, L. Limousy Eds., Elsevier, France (2019) p. 383. https://doi.org/10.1016/B978-0-12-814893-8.00010-9

95. P. Kalyani, A. Anitha. Int. J. Hydrogen Energy 38 (2013) 4034-4045 https://doi.org/10.1016/j.ijhydene.2013.01.048

96. P. Kalyani, T.R. Banuprabha, C. Sudharsana, N. Anvarsha, in Waste Material Recycling in the Circular Economy - Challenges and Developments, D.S. Achilias Ed., IntechOpen, United Kingdom (2022). https://doi.org/10.5772/intechopen.99448

97. C. Sudharsana, N. Anvarsha, P. Kalyani, in Nanocomposites – Properties, Preparations and Applications, V. Parvulescu, E.M.M. Anghel Eds., IntechOpen, United Kingdom (2024). https://doi.org/10.5772/intechopen.114402

98. K. Ashwini. J. Sridhar, D. Aravind, K. Senthil Kumar, T. Senthil Muthu Kumar, M. Chandrasekar, N. Rajini, in Green Hybrid Composite in Engineering and Non-Engineering Applications, T. Khan, M. Jawaid Eds., Springer Nature, Singapore (2023) p.211. https://doi.org/10.1007/978-981-99-1583-5_13

99. T. Temesgen, Y. Dessie, E. Tilahun, L.T. Tufa, B.A. Gonfa, T.A. Hamdalla, C.R. Ravikumar, and H.C. Ananda Murthy, ACS Omega, 9 (2024) 30725−30736. https://doi.org/10.1021/acsomega.4c03123

Downloads

Published

24.11.2024

Issue

Section

Articles

How to Cite

Advancements in phytomass-derived activated carbon for applications in energy storage systems: Original scientific paper. (2024). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ240526034P

Funding data

Similar Articles

11-17 of 17

You may also start an advanced similarity search for this article.