Advancements in phytomass-derived activated carbon for applications in energy storage systems
Original scientific paper
DOI:
https://doi.org/10.2298/CICEQ240526034PKeywords:
Activated carbon, phytomass, heteroatoms, supercapacitors, self-doped heteroatoms, circular bioeconomyAbstract
Phytomass, i.e. plant biomass-derived active carbon is a versatile electrode material for energy devices owing to their natural and ubiquitous abundance, variety, ecocentrism and unique physical properties. This article intricately reviews the recent advancements in phytomass derived activated carbon (PAC), chiefly for the supercapacitor electrodes and notably, phytomass including different parts of the plants limited to, stem, leaf, flower, seed, fruit and root for deriving ACs bestowed with excellent electrochemical performance have been considered. Advancement in the preparation of AC from phytomass, important facts associated with synthesis, physical and electrochemical attributes have also been elaborated, which is expected to furnish a fruitful direction towards advocating supercapacitors – the green energy packs. Surface of PAC is usually decorated with organic functional moieties containing heteroatoms like O, &/or S/N (referred to as self-doped heteroatoms). The synergy of these heteroatoms in enhancing the pseudocapacitance of the PAC electrodes in supercapacitors has also been featured. Further, the review provokes insights on strategies, prominent challenges, prospects and imminent opportunities and hopeful trend in support of AC from various plant parts that may power our energy-based society, scientific industries and in establishing sustainable energy sector as well by harnessing Nature’s potential.
References
1. P. Lauri, P. Havlík, G. Kindermann, N. Forsell, H. Böttcher, M. Obersteiner, Energy Policy 66 (2014) 19-31. https://doi.org/10.1016/j.enpol.2013.11.033.
2. V. Lebaka, in Biofuel Technologies, V. Gupta, M.G. Tuohy Eds., Springer, Berlin (2013), p. 223. https://doi.org/10.1007/978-3-642-34519-7_9
3. P. McKendry, Bioresour. Technol. 83 (2002) 47-54. https://doi.org/10.1016/S0960-8524(01)00119-5
4. M. Kaltschmitt, in Renewable Energy from Biomass, M. Kaltschmitt, N.J. Themelis, L.Y. Bronicki, L. Söder, L.A. Vega Eds., Springer, New York (2013) p. 1393. https://doi.org/10.1007/978-1-4614-5820-3_924
5. WBA, WBA Global bioenergy statistics 2018, Summary Report, World Bioenergy Association, www.worldenergy.org (2018). https://www.worldbioenergy.org/uploads/181017%20WBA%20GBS%202018_Summary_hq.pdf
6. S.D. Vassilev, L. Andersen, C. Vassileva, T. Morgan, Fuel 94 (2012) 1-33. https://doi.org/10.1016/j.fuel.2011.09.030.
7. J. Popp, S. Kovács, J. Oláh, Z. Divéki, E. Balázs, New Biotechnol. 60 (2021) 76–84. https://doi.org/10.1016/j.nbt.2020.10.004
8. A. Tursi, Biofuel Res. J. 22 (2019) 962-979. https://doi.org/10.18331/BRJ2019.6.2.3.
9. T.H. Kim, H. Kwak, T.H. Kim, K.K. Oh, Energies 13 (2020) 352. https://doi.org/10.3390/en13020352
10. T. Temesgen, Y. Dessie, E. Tilahun, L.T. Tufa, B.A. Gonfa, T.A. Hamdalla, C.R. Ravikumar, and H.C. Ananda Murthy, ACS Omega, 9 (2024) 30725−30736. https://doi.org/10.1021/acsomega.4c03123
11. J. Amrita, S.K. Tripathi, Mater. Sci. Eng., B 183 (2014) 54-61. https://doi.org/10.1016/j.mseb.2013.12.004
12. S.J. Allen, L. Whitten, G. McKay, Dev. Chem. Eng. Miner. Process. 6 (1998) 231-261. https://doi.org/10.1002/apj.5500060501
13. O. Ioannidou, A. Zabaniotou, Renewable Sustainable Energy Rev. 11 (2007) 1966–2005. https://doi.org/10.1016/j.rser.2006.03.013
14. W. Ao, J. Fu, X. Mao, Q. Kang, C. Ran, Y. Liu, H. Zhang, Z. Gao, J. Li, G. Liu, J. Dai, Renewable Sustainable Energy Rev. 92 (2018) 958–979. https://doi.org/10.1016/j.rser.2018.04.051
15. E. Menya, P.W. Olupot, H. Storz, M. Lubwama, Y. Kiros, Chem. Eng. Res. Des. 129 (2017) 271-296. https://doi.org/10.1016/j.cherd.2017.11.008
16. N.A Rashidi, S. Yusup, J. Cleaner Prod. 129 (2017) 271-296. https://doi.org/10.1016/j.jclepro.2017.09.045
17. H. Lee, K. An, S. Park, B. Kim, Nanomaterials 9 (2019) 608. https://doi.org/10.3390/nano9040608
18. Z. Z. Chowdhury, S.B.A. Hamid, R. Das, M.R Hasan, S.M. Zain, K. Khalid, M.N. Uddin, BioResources 8 (2013) 6523-6555. https://doi.org/10.15376/biores.8.4.6523-6555
19. P.G. García, Renewable Sustainable Energy Rev. 82 (2018) 1393-1414. http://dx.doi.org/10.1016/j.rser.2017.04.117
20. A. El-Naggar, A.H. El-Naggar, S.M. Shaheen, B. Sarkar, S.X. Chang, D.C. W. Tsang, J. Rinklebee, Y.S. Ok, J. Environ. Manage. 241 (2019) 458-467. https://doi.org/10.1016/j.jenvman.2019.02.044
21. A. Aworn, P. Thiravetyan, W. Nakbanpote, J. Anal. Appl. Pyrolysis 82 (2008) 279–285. https://doi.org/ 10.1016/j.jaap.2008.04.007
22. S. Balci, T. Dogu, H. Yucel, J. Chem. Technol. Biotechnol. 60 (1994) 419-426. https://doi.org/10.1002/jctb.280600413
23. M.A. Yahya, Z. Al-Qodah, C.Z. Ngah, Renewable Sustainable Energy Rev. 46 (2015) 218–235. https://doi.org/10.1016/j.rser.2015.02.051
24. M.I. Din, S. Ashraf, A. Intisar, Sci. Prog. 100 (2017) 299-312. https://doi.org/10.3184/003685017X14967570531606
25. A. Ahmad, H.M. Al-Swaidan, A.H. Alghamdi, J. Chem. Soc. Pak. 37 (2015) 1081-1087. https://jcsp.org.pk/PublishedVersion/da1050bc-8125-4cdc-ac13-985f52ab3159Manuscript%20no%202,%20Final%20Gally%20Proof%20of%2010561%20(Hassan%20Mohammed%20Al-Swaidan).pdf
26. O.A. Ekpete, M. Horsfall, J.N.R, Res. J. Chem. Sci. 3 (2011) 10-17. https://www.researchgate.net/publication/281212790_Preparation_and_characterization_of_activated_carbon_derived_from_fluted_pumpkin_stem_waste
27. V.K. Gupta, D. Pathania, S. Sharma, P. Singh, J. Colloid Interface Sci. 401 (2013) 125–132. https://doi.org/10.1016/j.jcis.2013.03.020
28. M. Fan, W. Marshall, D. Daugaard, R.C. Brown, Bioresour. Technol. 93 (2004) 103–107. https://doi.org/10.1016/j.biortech.2003.08.016
29. V. Minkova, M. Razvigorova, E. Bjornbom, R. Zanzi, T. Budinova, N. Petrov, Fuel Process Technol. 70 (2001) 53–61. https://doi.org/10.1016/S0378-3820(00)00153-3
30. J. Li, Y.Gao, K. Han, J. Qi, M. Li, Z. Teng, Sci Rep 9 (2019) 17270 doi: 10.1038/s41598-019-53869-w
31. S.Ghosh, , R. Santhosh, , S. Jeniffer, , V. Raghavan, , G. Jacob, , K. Nanaji, P. Kollu, S. K. Jeong, A. N. Grace, Sci Rep 9 (1) (2019) https://doi.org/10.1038/s41598-019-52006-x
32. N. Kumar, S.B. Kim, S.Y. Lee,S.J. Park, Nanomaterials (Basel) (2022) 12(20) 3708.doi: 10.3390/nano12203708
33. J.Yu, N. Fu, , J. Zhao, , R. Liu, , F. Li, , Y. Du, Z Yang, ACS Omega (2019) https://pubs.acs.org/doi/10.1021/acsomega.9b01916
34. M.I.A. Abdel Maksoud, R.A. Fahim, A.E. Shalan, M.A. Elkodous, S.O. Olojede, A.I. Osman, C. Farrell, H. Al Muhtase, A. S. Awed, A. H. Ashour, D.W. Rooney, Environ Chem Lett 19 (2021) 375–439. https://doi.org/10.1007/s10311-020-01075-w
35. B. Arumugam, G. Mayakrishnan, S.K.S. Manickavasagam, S.C. Kim, R. Vanaraj, Crystals 13 (7) (2023), 1118. https://doi.org/10.3390/cryst13071118
36. M. Li, Y. Fang, J. Li, B. Sun, J. Du, Q. Liu, Mater Lett, 318 (2022) 132182
https://doi.org/10.1016/j.matlet.2022.132182
37. K. Dujearic-Stephane, , M. Gupta, , A. Kumar, , V. Sharma, , S. Pandit, , P. Bocchetta, Y. Kumar, J Compos Sci, 5(3) (2021) 66. https://doi.org/10.3390/jcs5030066
38. T.Temesgen, E.T. Bekele, B.A. Gonfa, L.T. Tufa, F.K. Sabir, S. Tadesse, Y. Dessie, J EnergyStorage 73 (2023) 109293, 1-23. https://doi.org/10.1016/j.est.2023.109293
39. J. Zhao, A. Burke, J. Energy Chem. 59 (2021) 276-291. https://doi.org/10.1016/j.jechem.2020.11.013
40. K. Mensah-Darkwa, C. Zequine, P.K. Kahol, R.K Gupta, Sustainability 11 (2019) 1-22. https://doi.org/10.3390/su11020414
41. Y. Zhang, S. Liu, X. Zheng, X. Wang, Y. Xu, H. Tang, F. Kang, Q.H. Yang, J. Luo, Adv. Funct. Mater. 27 (2016) 1-8. https://doi.org/10.1002/adfm.201604687
42. X. He, P. Ling, J. Qiu, M. Yu, X. Zhang, C. Yu, M. Zheng, J. Power Sources 240 (2013) 109-113. https://doi.org/10.1016/j.jpowsour.2013.03.174
43. X. Xia, H. Liu, L. Shi, Y. He, J. Mater. Eng. Perform. 21 (2012) 1956–1961. https://doi.org/10.1007/s11665-011-0101-3
44. N. Sudhan, K. Subramani, M. Karnan, N. Ilayaraja, M. Sathish, Energy Fuels 31 (2016) 977-985. https://doi.org/10.1021/acs.energyfuels.6b01829
45. L. Xueliang, H. Changlong, C. Xiangying, S. Chengwu, Microporous Mesoporous Mater. 131 (2010) 303-309. https://doi.org/10.1016/j.micromeso.2010.01.007
46. X. Tian, H. Ma, Z. Li, S. Yan, L. Ma, F. Yu, G. Wang, X. Guo, Y. Ma, C. Wong, J. Power Sources 359 (2017) 88-96. https://doi.org/10.1016/j.jpowsour.2017.05.054
47. C. Wang, D. Wu, H. Wang, Z. Gao, F. Xu, K. Jiang, J. Mater. Chem. A 6 (2017) 1244-1254. https://doi.org/10.1039/C7TA07579K
48. S. Yan, J. Lin, P. Liu, Z. Zhao, J. Lian, W. Chang, L. Yao, Y. Liu, H. Lin, S. Han, RSC Adv. 8 (2018) 6806-6813. https://doi.org/10.1039/C7RA13013A
49. C. Wang, D. Wu, H. Wang, Z. Gao, F. Xu, K. Jiang, J. Power Sources 363 (2017) 375-383. https://doi.org/10.1016/j.jpowsour.2017.07.097
50. J. Phiri, J. Dou, T. Vuorinen, P.A.C. Gane, T.C. Maloney, ACS Omega 4 (2019) 18108-18117. https://doi.org/10.1021/acsomega.9b01977
51. C. Peng, X. Yan, R. Wang, J. Lang, Y. Oub, Q. Xue, Electrochim. Acta 87 (2013) 401– 408. https://doi.org/10.1016/j.electacta.2012.09.082
52. D. Jain, J. Kanungo, S.K. Tripathi, J. Alloys Compd. 832 (2020) 1-13. https://doi.org/10.1016/j.jallcom.2020.154956
53. S. Qu, J. Wan, C. Dai, T. Jin, F. Ma, J. Alloys Compd. 751 (2018) 107-116. https://doi.org/10.1016/j.jallcom.2018.04.123
54. S. Ahmed, M. Parvaz, R. Johari, M. Rafat, Mater. Res. Express 5 (2018) 1-10. http:// doi.org/10.1088/2053-1591/aab924
55. R. Wang, P. Wang, X. Yan, J. Lang, C. Peng, Q. Xue, ACS Appl. Mater. Interfaces 4 (2012) 5800-5806. https://doi.org/10.1021/am302077c
56. Y. T. Li, Y. T. Pi, L. M. Lu, S. H. Xu, T.Z. Ren, J. Power Sources 299 (2015) 519-528. https://doi.org/10.1016/j.jpowsour.2015.09.039
57. W. Fan, H. Zhang, H. Wang, X. Zhao, S. Sun, J. Shi, M. Huang, W. Liu, Y. Zheng, P. Li, RSC Adv. 9 (2019) 32382–32394. https://doi.org/10.1039/C9RA06914C
58. A. Khan, R.A. Senthil, J. Pan, Y. Sun, X. Liu, Batteries Supercaps 3 (2020) 731-737. https://doi.org/10.1002/batt.202000046
59. P. Veerakumar, T. Maiyalagan, B. Gnana Sundara Raj, K. Guruprasad, Z. Jiang, K.C. Lin, Arab. J. Chem. 13 (2020) 2995-3007. https://doi.org/10.1016/j.arabjc.2018.08.009
60. J. Chang, Z. Gao, X. Wang, D. Wu, F. Xu, X. Wang, Y. Guo, K. Jiang, Electrochim. Acta 157 (2015) 290–298. https://doi.org/10.1016/j.electacta.2014.12.169
61. H. Chen, F. Yu, G. Wang, L. Chen, B. Dai, S. Peng, ACS Omega 3 (2018) 4724−4732. https://doi.org/10.1021/acsomega.8b00210
62. F. Wu, J. Gao, X. Zhai, M. Xie, Y. Sun, H. Kang, Q. Tian, H. Qiu, Carbon 147 (2019) 242-251. https://doi.org/10.1016/j.carbon.2019.02.072
63. M. Sivachidambaram, J.J. Vijaya, L.J. Kennedy, R. Jothiramalingam, H.A. Al-Lohedan, M.A. Munusamy, E. Elanthamilan, J.P. Merlin, New J. Chem. 41 (2017) 3939-3949. https://doi.org/10.1039/C6NJ03867K
64. A. Elmouwahidi, Z. Zapata-Benabithe, F. Carrasco-Marın, C. Moreno-Castilla, Bioresour. Technol. 111 (2012) 185–190. https://doi.org/10.1016/j.biortech.2012.02.010
65. X. Li, W. Xing, S. Zhuo, J. Zhou, F. Li, S.Z. Qiao, G.Q. Lu, Bioresour. Technol. 102 (2011) 1118–1123. https://doi.org/10.1016/j.biortech.2010.08.110
66. C.C. Hu, C.C. Wang, F.C. Wu, R.L. Tseng, Electrochim. Acta 52 (2007) 2498-2505. https://doi.org/10.1016/j.electacta.2006.08.061
67. M. Olivares-Marin, J.A. Fernandez, M.J. Lazaro, C. Fernandez-Gonzalez, A. Macias-Garcia, V. Gomez-Serrano, F. Stoeckli, T.A. Centeno, Mater. Chem. Phys. 114 (2009) 323-327. https://doi.org/10.1016/j.matchemphys.2008.09.010
68. P. Kalyani, A. Anitha, Int. J. Res. Eng. Technol. 3 (2014) 225-238. https://doi.org/10.15623/ijret.2014.0309036
69. P. Kalyani, A. Anitha, A. Darchen, Int. J. Eng. Sci. Res. Technol. 4 (2015) 110-122.
70. L. Guardia, L. Suárez, N. Querejeta, R.R. Madrera, B. Suárez, T.A. Centeno, ACS Sustain. Chem. Eng. 7 (2019) 17335–17343. https://doi.org/10.1021/acssuschemeng.9b04266
71. C.K. Ranaweera, P.K. Kahol, M. Ghimire, S.R. Mishra, R.K. Gupta, C 3 (2017) 1-17. https://doi.org/10.3390/c3030025
72. E. Taer, A. Apriwandi, Y.S. Ningsih, R. Taslim, Agustino, Int. J. Electrochem. Sci. 14 (2019) 2462 – 2475. https://doi.org/10.20964/2019.03.17
73. M. Vinayagam, R.S. Babu, A. Sivasamy, A.L. Ferreira de Barros, Biomass Bioenergy 143 (2020) 1-8. https://doi.org/10.1016/j.biombioe.2020.105838
74. E. Elaiyappillai, R. Srinivasan, Y. Johnbosco, P. Devakumar, K. Murugesan, K. Kesavan, P.M. Johnson, Appl. Surf. Sci. 486 (2019) 527-538. https://doi.org/10.1016/j.apsusc.2019.05.004
75. Y. Wang, L. Zhao, H.Peng, X. Dai, X. Liu, G. Ma, Z. Lei, Ionics 25 (2019) 4315–4323. https://doi.org/10.1007/s11581-019-02966-x
76. N. Guo, M. Li, Y. Wang, X. Sun, F. Wang, R. Yang, ACS Appl. Mater. Interfaces 8 (2016) 33626–33634. https://doi.org/10.1021/acsami.6b11162
77. A. Gopalakrishnan, S. Badhulika, J. Power Sources 480 (2020) 1-17. https://doi.org/10.1016/j.jpowsour.2020.228830
78. Z. Li, Z. Xu, X. Tan, H. Wang, C.M. BHolt, T. Stephenson, B.C. Olsen, D. Mitlin, Energy Environ. Sci. 6 (2013) 871–878. https://doi.org/10.1039/C2EE23599D
79. D. Zhang, L. Zheng, Y. Ma, L. Lei, Q. Li, Y. Li, H. Luo, H. Feng, Y. Hao, ACS Appl. Mater. Interface, 6 (2014) 2657–2665.
https://doi.org/10.1021/am405128j
80. M. Seredych, T.J. Bandosz, J. Mater. Chem. A 1 (2013) 11717–11727. https://doi.org/10.1039/C3TA12252B
81. T.K. Enock, C.K. King’ondu, A. Pogrebnoi, Y.A.C. Jande, Int. J. Electrochem. 2017 (2017) 1-14. https://doi.org/10.1155/2017/6453420
82. M. Toda, A. Takagaki, M. Okamura, J.N. Kondo, S. Hayashi, K. Domen, M. Hara, Nature 438 (2005) 178. https://doi.org/10.1038/438178a
83. A. Macias-Garcia, C. Valenzuela-Calahorro, A. Espinosa-Man-silla, A. Bernalte-Garcia, V. Gomez-Serrano, Carbon 42 (2004) 1755–1764. https://doi.org/10.1016/j.carbon.2004.03.009
84. G. Hasegawa, M. Aoki, K. Kanamori, K. Nakanishi, T. Hanada, K. Tadanaga, J. Mater. Chem. 21 (2011) 2060–2063. https://doi.org/10.1039/C0JM03793A
85. J.A. Macia-Agullo, M. Sevilla, M.A. Diez, A.B. Fuertes, ChemSusChem. 3 (2010) 1352–1354. https://doi.org/10.1002/cssc.201000308
86. W. Kiciński, M. Szala, M. Bystrzejewski, Carbon 68 (2014) 1–32. https://doi.org/10.1016/j.carbon.2013.11.004
87. Z. Wan, Y. Sun, Tang, C.W. Daniel, D. Hou, X. Cao, S. Zhang, B. Gao, Y.S. Ok, Green Chem. 22 (2020) 2688–2711. https://doi.org/10.1039/d0gc00717j
88. W. Gu, M. Sevilla, A. Magasinski, A.B. Fuertes, G. Yushin, Energy Environ. Sci. 6 (2013) 2465–2476. https://doi.org/10.1039/C3EE41182F
89. X. Ma, G. Ning, Y. Kan, Y. Ma, C. Qi, B. Chen, Electrochim. Acta 150 (2014)108–113. https://doi.org/10.1016/j.electacta.2014.10.128
90. S. Liu, Y. Cai, X. Zhao, Y. Liang, M. Zheng, H. Hu, Y. Li, X. Lan, J. Gao, J. Power Sources 360 (2017) 373–382. https://doi.org/10.1016/j.jpowsour.2017.06.029
91. S. Yaglikci, Y. Gokce, E. Yagmur, Z. Aktas, Environ. Technol. 41 (2019) 36-48. https://doi.org/10.1080/09593330.2019.1575480
92. X. Zhao, Q. Zhang, C.M. Chen, B. Zhang, S. Reiche, A. Wang, T. Zhang, R. Schlogla, D.S. Sua, Nano Energy 1 (2012) 624-630. https://doi.org/10.1016/j.nanoen.2012.04.003
93. D. Lozano-Castello, D. Cazorla-Amoros, A. Linares-Solano, S. Shiraishi, H. Kurihara, A. Oya, Carbon 41 (2003) 1765-1775. https://doi.org/10.1016/S0008-6223(03)00141-6
94. J. Conder, K. Fic, C.M. Ghimbeu, in Char and Carbon Materials Derived from Biomass, M. Jeguirim, L. Limousy Eds., Elsevier, France (2019) p. 383. https://doi.org/10.1016/B978-0-12-814893-8.00010-9
95. P. Kalyani, A. Anitha. Int. J. Hydrogen Energy 38 (2013) 4034-4045 https://doi.org/10.1016/j.ijhydene.2013.01.048
96. P. Kalyani, T.R. Banuprabha, C. Sudharsana, N. Anvarsha, in Waste Material Recycling in the Circular Economy - Challenges and Developments, D.S. Achilias Ed., IntechOpen, United Kingdom (2022). https://doi.org/10.5772/intechopen.99448
97. C. Sudharsana, N. Anvarsha, P. Kalyani, in Nanocomposites – Properties, Preparations and Applications, V. Parvulescu, E.M.M. Anghel Eds., IntechOpen, United Kingdom (2024). https://doi.org/10.5772/intechopen.114402
98. K. Ashwini. J. Sridhar, D. Aravind, K. Senthil Kumar, T. Senthil Muthu Kumar, M. Chandrasekar, N. Rajini, in Green Hybrid Composite in Engineering and Non-Engineering Applications, T. Khan, M. Jawaid Eds., Springer Nature, Singapore (2023) p.211. https://doi.org/10.1007/978-981-99-1583-5_13
99. T. Temesgen, Y. Dessie, E. Tilahun, L.T. Tufa, B.A. Gonfa, T.A. Hamdalla, C.R. Ravikumar, and H.C. Ananda Murthy, ACS Omega, 9 (2024) 30725−30736. https://doi.org/10.1021/acsomega.4c03123
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Kalyani Palanichamy, Banuprabha Thakku Rangachari, Sridhar Jayavel, Aravind Dhandapani, Varagunapandiyan Natarajan
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
How to Cite
Funding data
-
Deanship of Scientific Research, King Khalid University
Grant numbers RGP.2/242/45 -
Rashtriya Uchchatar Shiksha Abhiyan
Grant numbers 55/RUSA/MKU/2021-2022