ADVANCEMENTS IN PHYTOMASS-DERIVED ACTIVATED CARBON FOR APPLICATIONS IN ENERGY STORAGE SYSTEMS

Original scientific paper

Authors

  • Kalyani Palanichamy Department of Chemistry, DDE, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India
  • Banuprabha Thakku Rangachari Department of Chemistry, Mary Matha College of Arts and Science, Periyakulam, Tamil Nadu, India
  • Sridhar Jayavel Department of Biotechnology, DDE, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India https://orcid.org/0000-0001-7947-2438
  • Aravind Dhandapani University Science Instrumentation Centre, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India
  • Varagunapandiyan Natarajan Department of Chemical Engineering, King Khalid University, Abha, 61421, Saudi Arabia

DOI:

https://doi.org/10.2298/CICEQ240526034P

Keywords:

Activated carbon, phytomass, heteroatoms, supercapacitors, self-doped heteroatoms, circular bioeconomy

Abstract

Phytomass i.e. plant biomass-derived active carbon is a versatile electrode material for energy devices owing to its natural and ubiquitous abundance, variety, ecocentrism, and unique physical properties. This article intricately reviews the recent advancements in phytomass-derived activated carbon (PAC), chiefly for the supercapacitor electrodes and notably, phytomass including different parts of the plants limited to, stem, leaf, flower, seed, fruit, and root for deriving PACs bestowed with excellent electrochemical performance have been considered. Advancement in the preparation of activated from phytomass, important facts associated with synthesis, and physical and electrochemical attributes have also been elaborated, which is expected to furnish a fruitful direction towards advocating supercapacitors – the green energy packs. The surface of PAC is usually decorated with organic functional moieties containing heteroatoms like O, and/or S/N (referred to as self-doped heteroatoms). The synergy of these heteroatoms in enhancing the pseudocapacitance of the PAC electrodes in supercapacitors has also been featured. Further, the review provokes insights on strategies, prominent challenges, prospects, imminent opportunities, and hopeful trends in support of AC from various plant parts that may power our energy-based society, and scientific industries and in establishing a sustainable energy sector as well by harnessing nature’s potential.

References

[1] P. Lauri, P. Havlík, G. Kindermann, N. Forsell, H. Böttcher, M. Obersteiner, Energy Policy 66 (2014) 19—31. https://doi.org/10.1016/j.enpol.2013.11.033.

[2] V. Lebaka, in Biofuel Technologies, V. Gupta, M.G. Tuohy Eds., Springer, Berlin (2013), p. 223. https://doi.org/10.1007/978-3-642-34519-7_9.

[3] P. McKendry, Bioresour. Technol. 83 (2002) 47—54. https://doi.org/10.1016/S0960-8524(01)00119-5.

[4] M. Kaltschmitt, in Renewable Energy from Biomass, M. Kaltschmitt, N.J. Themelis, L.Y. Bronicki, L. Söder, L.A. Vega Eds., Springer, New York (2013) p. 1393. https://doi.org/10.1007/978-1-4614-5820-3_924.

[5] WBA, WBA Global bioenergy statistics 2018, Summary Report, World Bioenergy Association, www.worldenergy.org (2018). https://www.worldbioenergy.org/uploads/181017%20WBA%20GBS%202018_Summary_hq.pdf.

[6] S.D. Vassilev, L. Andersen, C. Vassileva, T. Morgan, Fuel 94 (2012) 1—33. https://doi.org/10.1016/j.fuel.2011.09.030.

[7] J. Popp, S. Kovács, J. Oláh, Z. Divéki, E. Balázs, New Biotechnol. 60 (2021) 76—84. https://doi.org/10.1016/j.nbt.2020.10.004.

[8] A. Tursi, Biofuel Res. J. 22 (2019) 962—979. https://doi.org/10.18331/BRJ2019.6.2.3.

[9] T.H. Kim, H. Kwak, T.H. Kim, K.K. Oh, Energies 13 (2020) 352. https://doi.org/10.3390/en13020352.

[10] T. Temesgen, Y. Dessie, E. Tilahun, L.T. Tufa, B.A. Gonfa, T.A. Hamdalla, C.R. Ravikumar, H.C. Ananda Murthy, ACS Omega, 9 (2024) 30725—30736. https://doi.org/10.1021/acsomega.4c03123.

[11] J. Amrita, S.K. Tripathi, Mater. Sci. Eng., B 183 (2014) 54—61. https://doi.org/10.1016/j.mseb.2013.12.004.

[12] S.J. Allen, L. Whitten, G. McKay, Dev. Chem. Eng. Miner. Process. 6 (1998) 231—261. https://doi.org/10.1002/apj.5500060501.

[13] O. Ioannidou, A. Zabaniotou, Renewable Sustainable Energy Rev. 11 (2007) 1966—2005. https://doi.org/10.1016/j.rser.2006.03.013.

[14] W. Ao, J. Fu, X. Mao, Q. Kang, C. Ran, Y. Liu, H. Zhang, Z. Gao, J. Li, G. Liu, J. Dai, Renewable Sustainable Energy Rev. 92 (2018) 958—979. https://doi.org/10.1016/j.rser.2018.04.051.

[15] E. Menya, P.W. Olupot, H. Storz, M. Lubwama, Y. Kiros, Chem. Eng. Res. Des. 129 (2017) 271—296. https://doi.org/10.1016/j.cherd.2017.11.008.

[16] N.A Rashidi, S. Yusup, J. Cleaner Prod. 129 (2017) 271—296. https://doi.org/10.1016/j.jclepro.2017.09.045.

[17] H. Lee, K. An, S. Park, B. Kim, Nanomaterials 9 (2019) 608. https://doi.org/10.3390/nano9040608.

[18] Z. Z. Chowdhury, S.B.A. Hamid, R. Das, M.R Hasan, S.M. Zain, K. Khalid, M.N. Uddin, BioResources 8 (2013) 6523—6555. https://doi.org/10.15376/biores.8.4.6523-6555.

[19] P.G. García, Renewable Sustainable Energy Rev. 82 (2018) 1393—1414. http://dx.doi.org/10.1016/j.rser.2017.04.117.

[20] A. El-Naggar, A.H. El-Naggar, S.M. Shaheen, B. Sarkar, S.X. Chang, D.C. W. Tsang, J. Rinklebee, Y.S. Ok, J. Environ. Manage. 241 (2019) 458—467. https://doi.org/10.1016/j.jenvman.2019.02.044.

[21] A. Aworn, P. Thiravetyan, W. Nakbanpote, J. Anal. Appl. Pyrolysis 82 (2008) 279—285. https://doi.org/ 10.1016/j.jaap.2008.04.007.

[22] S. Balci, T. Dogu, H. Yucel, J. Chem. Technol. Biotechnol. 60 (1994) 419—426. https://doi.org/10.1002/jctb.280600413.

[23] M.A. Yahya, Z. Al-Qodah, C.Z. Ngah, Renewable Sustainable Energy Rev. 46 (2015) 218—235. https://doi.org/10.1016/j.rser.2015.02.051.

[24] M.I. Din, S. Ashraf, A. Intisar, Sci. Prog. 100 (2017) 299—312. https://doi.org/10.3184/003685017X14967570531606.

[25] A. Ahmad, H.M. Al-Swaidan, A.H. Alghamdi, J. Chem. Soc. Pak. 37 (2015) 1081—1087. https://jcsp.org.pk/PublishedVersion/da1050bc-8125-4cdc-ac13-985f52ab3159Manuscript%20no%202,%20Final%20Gally%20Proof%20of%2010561%20(Hassan%20Mohammed%20Al-Swaidan).pdf.

[26] O.A. Ekpete, M. Horsfall, J.N.R, Res. J. Chem. Sci. 3 (2011) 10—17. https://www.researchgate.net/publication/281212790_Preparation_and_characterization_of_activated_carbon_derived_from_fluted_pumpkin_stem_waste.

[27] V.K. Gupta, D. Pathania, S. Sharma, P. Singh, J. Colloid Interface Sci. 401 (2013) 125—132. https://doi.org/10.1016/j.jcis.2013.03.020.

[28] M. Fan, W. Marshall, D. Daugaard, R.C. Brown, Bioresour. Technol. 93 (2004) 103—107. https://doi.org/10.1016/j.biortech.2003.08.016.

[29] V. Minkova, M. Razvigorova, E. Bjornbom, R. Zanzi, T. Budinova, N. Petrov, Fuel Process Technol. 70 (2001) 53—61. https://doi.org/10.1016/S0378-3820(00)00153-3.

[30] J. Li, Y.Gao, K. Han, J. Qi, M. Li, Z. Teng, Sci Rep 9 (2019) 17270. https://doi.org/10.1038%2Fs41598-019-53869-w.

[31] S.Ghosh, R. Santhosh, S. Jeniffer, V. Raghavan, G. Jacob, K. Nanaji, P. Kollu, S. K. Jeong, A. N. Grace, Sci Rep 9 (1) (2019). https://doi.org/10.1038/s41598-019-52006-x.

[32] N. Kumar, S.B. Kim, S.Y. Lee, S.J. Park, Nanomaterials (Basel) (2022) 12(20) 3708. https://doi.org/10.3390%2Fnano12203708.

[33] .Yu, N. Fu, J. Zhao, R. Liu, F. Li, Y. Du, Z Yang, ACS Omega (2019). https://pubs.acs.org/doi/10.1021/acsomega.9b01916.

[34] M.I.A. Abdel Maksoud, R.A. Fahim, A.E. Shalan, M.A. Elkodous, S.O. Olojede, A.I. Osman, C. Farrell, H. Al Muhtase, A.S. Awed, A.H. Ashour, D.W. Rooney, Environ Chem Lett 19 (2021) 375—439. https://doi.org/10.1007/s10311-020-01075-w.

[35] B. Arumugam, G. Mayakrishnan, S.K.S. Manickavasagam, S.C. Kim, R. Vanaraj, Crystals 13 (7) (2023), 1118. https://doi.org/10.3390/cryst13071118.

[36] M. Li, Y. Fang, J. Li, B. Sun, J. Du, Q. Liu, Mater Lett, 318 (2022) 132182. https://doi.org/10.1016/j.matlet.2022.132182.

[37] K. Dujearic-Stephane, M. Gupta, A. Kumar, V. Sharma, S. Pandit, P. Bocchetta, Y. Kumar, J Compos Sci, 5(3) (2021) 66. https://doi.org/10.3390/jcs5030066.

[38] T.Temesgen, E.T. Bekele, B.A. Gonfa, L.T. Tufa, F.K. Sabir, S. Tadesse, Y. Dessie, J EnergyStorage 73 (2023) 109293, 1—23. https://doi.org/10.1016/j.est.2023.109293.

[39] J. Zhao, A. Burke, J. Energy Chem. 59 (2021) 276—291. https://doi.org/10.1016/j.jechem.2020.11.013.

[40] K. Mensah-Darkwa, C. Zequine, P.K. Kahol, R.K Gupta, Sustainability 11 (2019) 1—22. https://doi.org/10.3390/su11020414.

[41] Y. Zhang, S. Liu, X. Zheng, X. Wang, Y. Xu, H. Tang, F. Kang, Q.H. Yang, J. Luo, Adv. Funct. Mater. 27 (2016) 1—8. https://doi.org/10.1002/adfm.201604687.

[42] X. He, P. Ling, J. Qiu, M. Yu, X. Zhang, C. Yu, M. Zheng, J. Power Sources 240 (2013) 109—113. http://dx.doi.org/10.1016/j.jpowsour.2013.03.174.

[43] X. Xia, H. Liu, L. Shi, Y. He, J. Mater. Eng. Perform. 21 (2012) 1956—1961. https://doi.org/10.1007/s11665-011-0101-3.

[44] N. Sudhan, K. Subramani, M. Karnan, N. Ilayaraja, M. Sathish, Energy Fuels 31 (2016) 977—985. http://dx.doi.org/10.1021/acs.energyfuels.6b01829.

[45] L. Xueliang, H. Changlong, C. Xiangying, S. Chengwu, Microporous Mesoporous Mater. 131 (2010) 303—309. http://dx.doi.org/10.1016/j.micromeso.2010.01.007.

[46] X. Tian, H. Ma, Z. Li, S. Yan, L. Ma, F. Yu, G. Wang, X. Guo, Y. Ma, C. Wong, J. Power Sources 359 (2017) 88—96. https://doi.org/10.1016/j.jpowsour.2017.05.054.

[47] C. Wang, D. Wu, H. Wang, Z. Gao, F. Xu, K. Jiang, J. Mater. Chem. A 6 (2017) 1244—1254. https://doi.org/10.1039/C7TA07579K.

[48] S. Yan, J. Lin, P. Liu, Z. Zhao, J. Lian, W. Chang, L. Yao, Y. Liu, H. Lin, S. Han, RSC Adv. 8 (2018) 6806—6813. https://doi.org/10.1039/C7RA13013A.

[49] C. Wang, D. Wu, H. Wang, Z. Gao, F. Xu, K. Jiang, J. Power Sources 363 (2017) 375—383. http://dx.doi.org/10.1016/j.jpowsour.2017.07.097.

[50] J. Phiri, J. Dou, T. Vuorinen, P.A.C. Gane, T.C. Maloney, ACS Omega 4 (2019) 18108—18117. https://doi.org/10.1021/acsomega.9b01977.

[51] C. Peng, X. Yan, R. Wang, J. Lang, Y. Oub, Q. Xue, Electrochim. Acta 87 (2013) 401—408. https://doi.org/10.1016/j.electacta.2012.09.082.

[52] D. Jain, J. Kanungo, S.K. Tripathi, J. Alloys Compd. 832 (2020) 1—13. https://doi.org/10.1016/j.jallcom.2020.154956.

[53] S. Qu, J. Wan, C. Dai, T. Jin, F. Ma, J. Alloys Compd. 751 (2018) 107—116. https://doi.org/10.1016/j.jallcom.2018.04.123.

[54] S. Ahmed, M. Parvaz, R. Johari, M. Rafat, Mater. Res. Express 5 (2018) 1—10. http://doi.org/10.1088/2053-1591/aab924.

[55] R. Wang, P. Wang, X. Yan, J. Lang, C. Peng, Q. Xue, Activated carbon Appl. Mater. Interfaces 4 (2012) 5800—5806. https://doi.org/10.1021/am302077c.

[56] Y. T. Li, Y. T. Pi, L. M. Lu, S. H. Xu, T.Z. Ren, J. Power Sources 299 (2015) 519—528. https://doi.org/10.1016/j.jpowsour.2015.09.039.

[57] W. Fan, H. Zhang, H. Wang, X. Zhao, S. Sun, J. Shi, M. Huang, W. Liu, Y. Zheng, P. Li, RSC Adv. 9 (2019) 32382—32394. https://doi.org/10.1039/C9RA06914C.

[58] A. Khan, R.A. Senthil, J. Pan, Y. Sun, X. Liu, Batteries Supercaps 3 (2020) 731—737. https://doi.org/10.1002/batt.202000046.

[59] P. Veerakumar, T. Maiyalagan, B. Gnana Sundara Raj, K. Guruprasad, Z. Jiang, K.C. Lin, Arab. J. Chem. 13 (2020) 2995—3007. https://doi.org/10.1016/j.arabjc.2018.08.009.

[60] J. Chang, Z. Gao, X. Wang, D. Wu, F. Xu, X. Wang, Y. Guo, K. Jiang, Electrochim. Acta 157 (2015) 290—298. https://doi.org/10.1016/j.electacta.2014.12.169.

[61] H. Chen, F. Yu, G. Wang, L. Chen, B. Dai, S. Peng, ACS Omega 3 (2018) 4724—4732. https://doi.org/10.1021/acsomega.8b00210.

[62] F. Wu, J. Gao, X. Zhai, M. Xie, Y. Sun, H. Kang, Q. Tian, H. Qiu, Carbon 147 (2019) 242—251. https://doi.org/10.1016/j.carbon.2019.02.072.

[63] M. Sivachidambaram, J.J. Vijaya, L.J. Kennedy, R. Jothiramalingam, H.A. Al-Lohedan, M.A. Munusamy, E. Elanthamilan, J.P. Merlin, New J. Chem. 41 (2017) 3939—3949. https://doi.org/10.1039/C6NJ03867K.

[64] A. Elmouwahidi, Z. Zapata-Benabithe, F. Carrasco-Marın, C. Moreno-Castilla, Bioresour. Technol. 111 (2012) 185—190. https://doi.org/10.1016/j.biortech.2012.02.010.

[65] X. Li, W. Xing, S. Zhuo, J. Zhou, F. Li, S.Z. Qiao, G.Q. Lu, Bioresour. Technol. 102 (2011) 1118—1123. https://doi.org/10.1016/j.biortech.2010.08.110.

[66] C.C. Hu, C.C. Wang, F.C. Wu, R.L. Tseng, Electrochim. Acta 52 (2007) 2498—2505. http://dx.doi.org/10.1016/j.electacta.2006.08.061.

[67] M. Olivares-Marin, J.A. Fernandez, M.J. Lazaro, C. Fernandez-Gonzalez, A. Macias-Garcia, V. Gomez-

Serrano, F. Stoeckli, T.A. Centeno, Mater. Chem. Phys. 114 (2009) 323—327. https://doi.org/10.1016/j.matchemphys.2008.09.010.

[68] P. Kalyani, A. Anitha, Int. J. Res. Eng. Technol. 3 (2014) 225—238. http://dx.doi.org/10.15623/ijret.2014.0309036.

[69] P. Kalyani, A. Anitha, A. Darchen, Int. J. Eng. Sci. Res. Technol. 4 (2015) 110—122. https://www.ijesrt.com/Old_IJESRT/issues%20pdf%20file/Archives-2015/January-2015/16_OBTAINING%20ACTIVATED%20CARBON%20FROM%20PAPAYA%20SEEDS%20FOR%20ENERGY%20STORAGE%20DEVICES.pdf.

[70] L. Guardia, L. Suárez, N. Querejeta, R.R. Madrera, B. Suárez, T.A. Centeno, ACS Sustain. Chem. Eng. 7 (2019) 17335—17343. http://dx.doi.org/10.1021/acssuschemeng.9b04266.

[71] C.K. Ranaweera, P.K. Kahol, M. Ghimire, S.R. Mishra, R.K. Gupta, C 3 (2017) 1—17. https://doi.org/10.3390/c3030025.

[72] E. Taer, A. Apriwandi, Y.S. Ningsih, R. Taslim, Agustino, Int. J. Electrochem. Sci. 14 (2019) 2462—2475. http://dx.doi.org/10.20964/2019.03.17.

[73] M. Vinayagam, R.S. Babu, A. Sivasamy, A.L. Ferreira de Barros, Biomass Bioenergy 143 (2020) 1—8. http://dx.doi.org/10.1016/j.biombioe.2020.105838.

[74] E. Elaiyappillai, R. Srinivasan, Y. Johnbosco, P. Devakumar, K. Murugesan, K. Kesavan, P.M. Johnson,

Appl. Surf. Sci. 486 (2019) 527—538. https://doi.org/10.1016/j.apsusc.2019.05.004.

[75] Y. Wang, L. Zhao, H. Peng, X. Dai, X. Liu, G. Ma, Z. Lei, Ionics 25 (2019) 4315—4323. https://link.springer.com/article/10.1007/s11581-019-02966-x.

[76] N. Guo, M. Li, Y. Wang, X. Sun, F. Wang, R. Yang, Activated carbon Appl. Mater. Interfaces 8 (2016) 33626—33634. https://doi.org/10.1021/acsami.6b11162.

[77] A. Gopalakrishnan, S. Badhulika, J. Power Sources 480 (2020) 1—17. https://doi.org/10.1016/j.jpowsour.2020.228830.

[78] Z. Li, Z. Xu, X. Tan, H. Wang, C.M. BHolt, T. Stephenson, B.C. Olsen, D. Mitlin, Energy Environ. Sci. 6 (2013) 871—878. https://doi.org/10.1039/C2EE23599D.

[79] D. Zhang, L. Zheng, Y. Ma, L. Lei, Q. Li, Y. Li, H. Luo, H. Feng, Y. Hao, Activated carbon Appl. Mater. Interface, 6 (2014) 2657—2665. https://doi.org/10.1021/am405128j.

[80] M. Seredych, T.J. Bandosz, J. Mater. Chem. A 1 (2013) 11717—11727. https://doi.org/10.1039/C3TA12252B.

[81] T.K. Enock, C.K. King’ondu, A. Pogrebnoi, Y.A.C. Jande, Int. J. Electrochem. 2017 (2017) 1—14. http://dx.doi.org/10.1155/2017/6453420.

[82] M. Toda, A. Takagaki, M. Okamura, J.N. Kondo, S. Hayashi, K. Domen, M. Hara, Nature 438 (2005) 178. https://doi.org/10.1038/438178a.

[83] A. Macias-Garcia, C. Valenzuela-Calahorro, A. Espinosa-Man-silla, A. Bernalte-Garcia, V. Gomez-Serrano, Carbon 42 (2004) 1755—1764. http://dx.doi.org/10.1016/j.carbon.2004.03.009.

[84] G. Hasegawa, M. Aoki, K. Kanamori, K. Nakanishi, T. Hanada, K. Tadanaga, J. Mater. Chem. 21 (2011) 2060—2063. https://doi.org/10.1039/C0JM03793A.

[85] J.A. Macia-Agullo, M. Sevilla, M.A. Diez, A.B. Fuertes, ChemSusChem. 3 (2010) 1352—1354. https://doi.org/10.1002/cssc.201000308.

[86] W. Kiciński, M. Szala, M. Bystrzejewski, Carbon 68 (2014) 1—32. https://doi.org/10.1016/j.carbon.2013.11.004.

[87] Z. Wan, Y. Sun, Tang, C.W. Daniel, D. Hou, X. Cao, S. Zhang, B. Gao, Y.S. Ok, Green Chem. 22 (2020) 2688—2711. https://doi.org/10.1039/d0gc00717j.

[88] W. Gu, M. Sevilla, A. Magasinski, A.B. Fuertes, G. Yushin, Energy Environ. Sci. 6 (2013) 2465—2476. https://doi.org/10.1039/C3EE41182F.

[89] X. Ma, G. Ning, Y. Kan, Y. Ma, C. Qi, B. Chen, Electrochim. Acta 150 (2014)108—113. https://doi.org/10.1016/j.electacta.2014.10.128.

[90] S. Liu, Y. Cai, X. Zhao, Y. Liang, M. Zheng, H. Hu, Y. Li, X. Lan, J. Gao, J. Power Sources 360 (2017) 373—382. https://doi.org/10.1016/j.jpowsour.2017.06.029.

[91] S. Yaglikci, Y. Gokce, E. Yagmur, Z. Aktas, Environ. Technol. 41 (2019) 36—48. https://doi.org/10.1080/09593330.2019.1575480.

[92] X. Zhao, Q. Zhang, C.M. Chen, B. Zhang, S. Reiche, A. Wang, T. Zhang, R. Schlogla, D.S. Sua, Nano Energy 1 (2012) 624—630. https://doi.org/10.1016/j.nanoen.2012.04.003.

[93] D. Lozano-Castello, D. Cazorla-Amoros, A. Linares-Solano, S. Shiraishi, H. Kurihara, A. Oya, Carbon 41 (2003) 1765—1775. https://doi.org/10.1016/S0008-6223(03)00141-6.

[94] J. Conder, K. Fic, C.M. Ghimbeu, in Char and Carbon Materials Derived from Biomass, M. Jeguirim, L. Limousy Eds., Elsevier, France (2019) p. 383. https://doi.org/10.1016/B978-0-12-814893-8.00010-9.

[95] P. Kalyani, A. Anitha. Int. J. Hydrogen Energy 38 (2013) 4034—4045. https://doi.org/10.1016/j.ijhydene.2013.01.048.

[96] P. Kalyani, T.R. Banuprabha, C. Sudharsana, N. Anvarsha, in Waste Material Recycling in the Circular Economy - Challenges and Developments, D.S. Achilias Ed., IntechOpen, United Kingdom (2022). https://doi.org/10.5772/intechopen.99448.

[97] C. Sudharsana, N. Anvarsha, P. Kalyani, in Nanocomposites – Properties, Preparations and Applications, V. Parvulescu, E.M.M. Anghel Eds., IntechOpen, United Kingdom (2024). https://doi.org/10.5772/intechopen.114402.

[98] K. Ashwini. J. Sridhar, D. Aravind, K. Senthil Kumar, T. Senthil Muthu Kumar, M. Chandrasekar, N. Rajini, in Green Hybrid Composite in Engineering and Non-Engineering Applications, T. Khan, M. Jawaid Eds., Springer Nature, Singapore (2023). p.211. https://doi.org/10.1007/978-981-99-1583-5_13.

[99] T. Temesgen, Y. Dessie, E. Tilahun, L.T. Tufa, B.A. Gonfa, T.A. Hamdalla, C.R. Ravikumar, and H.C. Ananda Murthy, ACS Omega, 9 (2024) 30725—30736. https://doi.org/10.1021/acsomega.4c03123.

Published

24.11.2024 — Updated on 16.04.2025

Issue

Section

Articles

How to Cite

ADVANCEMENTS IN PHYTOMASS-DERIVED ACTIVATED CARBON FOR APPLICATIONS IN ENERGY STORAGE SYSTEMS: Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly, 31(4), 257-276. https://doi.org/10.2298/CICEQ240526034P

Funding data

Similar Articles

1-10 of 19

You may also start an advanced similarity search for this article.