Soybean oil pyrolysis in a continuous bench-scale reactor for light olefin production

Original scientific paper

Authors

  • Vinicyus Rodolfo Wiggers Department of Chemical Engineering, Regional University of Blumenau, Blumenau, SC, Brazil https://orcid.org/0000-0003-2273-8025
  • Robson Gil de Souza Ramos Department of Chemical Engineering, Regional University of Blumenau, Blumenau, SC, Brazil
  • Gabriel Henrique Wienhage Department of Chemical Engineering, Regional University of Blumenau, Blumenau, SC, Brazil
  • Tuanne Gomes Porto Department of Chemical Engineering, Regional University of Blumenau, Blumenau, SC, Brazil
  • António André Chivanga Barros Instituto Superior Politecnico de Tecnologias e Ciencias, Luanda, Angola https://orcid.org/0000-0001-5922-5368
  • Luana Marcele Chiarello Department of Chemical Engineering, Regional University of Blumenau, Blumenau, SC, Brazil

DOI:

https://doi.org/10.2298/CICEQ240226033W

Keywords:

Cracking, ethene, propene, renewables, triglycerides

Abstract

This study investigated the gas yield and its composition in different operation temperatures, giving special attention to light olefin production and oxygen content in soybean oil pyrolysis. The experiments were conducted in a continuous bench-scale reactor at steady state and isothermal conditions. Temperatures ranged from 500 to 600 °C with constant feeding mass flow. The resulting bio-oil exhibited high acid and iodine indices, as expected. Biogas samples were collected and submitted to gas chromatography to determine the chemical composition. The results revealed that ethene and propene formation are intensified with temperature, reaching more than 30% values in the gas phase. Additionally, higher temperatures led to increased oxygen removal from the triglyceride.

References

M. Heydari, A. Heydari, M. Amini, Int. J. Eng. Appl. Sci. 9 (2023) 167-173. https://ssrn.com/abstract=4515903

O.O. Yolcan, Innov. Green Dev. 2 (2023) 100070. https://doi.org/10.1016/j.igd.2023.100070

T. Li, J. Wang, H. Chen, W. Li, P. Pan, L. Wu, G. Xu, H. Chen, Energy Convers. Manage. 287 (2023) 117085. https://doi.org/10.1016/j.enconman.2023.117085

J. Tomei, R. Helliwell, Food versus fuel. Going beyond biofuels. Land Use Policy, 56 (2016). http://dx.doi.org/10.1016/j.landusepol.2015.11.015

T.C. Floriani, L.M. Chiarello, T.G. Porto, V.R. Wiggers, J. Solid Waste Technol. Manage. 48 (2022) 270–279. https://doi.org/10.5276/JSWTM/2022.270

B.E. Piske, F. Lopes, J. Utzig, V.R. Wiggers, Renewable Energy Power Qual. J. 21 (2023) 154–159. https://doi.org/10.24084/repqj21.255

L. Chiarello, T. Porto, A. Barros, E. Simionatto, V. Botton, V. Wiggers, Angolan Miner. Oil Gas J. 1 (2020) 1-5. https://doi.org/10.47444/amogj.v1i1.1

T.G. Porto, W.O. Tavares, F. Lopes, D. Vênancio, G.H. Wienhage, L.M. Chiarello, V.R. Wiggers, Angolan Miner. Oil Gas J. 2 (2021) 28-31. https://doi.org/10.47444/amogj.v2i2.5

Y. Shirazi, S. Viamajala, S. Varanasi, Appl. Energy 179 (2016) 755–764. https://doi.org/10.1016/j.apenergy.2016.07.025

D.G. Lima, V.C.D. Soares, E.B. Ribeiro, D.A. Carvalho, É.C.V. Cardoso, F.C. Rassi, K.C. Mundim, J.C. Rubim, P.A.Z. Suarez, J. Anal. Appl. Pyrolysis, 71, 987, 2004. https://doi.org/10.1016/j.jaap.2003.12.008.

L.M. Chiarello, T.G. Porto, G.H. Wienhage, V. Botton, V.R. Wiggers, in Handbook of Biomass Valorization for Industrial Applications, Shahid-ul-Islam, A.H. Shalla, S.A. Khan Eds., Wiley (2022) p. 107-128. https://doi.org/10.1002/9781119818816.ch6

S. Czernik, V Bridgwater, Energy Fuels 18 (2004) 590-598. https://doi.org/10.1021/ef034067u

G. Menshhein, V. Costa, L. M. Chiarello, D.R. Scharf, E.L. Simionato, V. Botton, H.F. Meier, V.R. Wiggers, L. Ender, Renewable Energy 142 (2019) 561-568. https://doi.org/10.1016/j.renene.2019.04.136

V.R. Wiggers, R.F. Beims, L. Ender, E.L. Simionatto, H.F. Meier, in Frontiers in Bioenergy and Biofuels, E. Jacob-Lopes, L.Q. Zepka Eds., InTech Open (2017) p. 524. http://doi.org/10.5772/65498

X. Hu, M. Gholizadeh, J. Energy Chem. 39 (2019) 109-143. https://doi.org/10.1016/j.jechem.2019.01.024

T. Stedile, R.F. Beims, L. Ender, D.R. Scharf, E.L. Simionato, H.F. Meier, V.R. Wiggers, Brazilian J. Chem. Eng. 36 (2019) 573-585. https://doi.org/10.1590/0104-6632.20190361s20170466

G. Menshhein, V. Costa, L.M. Chiarello, D.R. Scharf, E.L. Simionato, V. Botton, H.F. Meier, V.R. Wiggers, L. Ender, Data Brief 25 (2019) 104325. https://doi.org/10.1016/j.dib.2019.104325

T. Stedile, L. Ender, H.F. Meier, E.L. Simionatto, V.R. Wiggers, Renewable Sustainable Energy Rev. 50 (2015) 92-108. https://doi.org/10.1016/j.rser.2015.04.080

A. V. Bridgwater, Chem. Eng. J. 91 (2003) 87-102. https://doi.org/10.1016/S1385-8947(02)00142-0

L. Zhang, R. Gao, L. Wang, C. Zhang, K. Jun, S. K. Kim, T. Zhao, H. Wan, G. Guan, Chem. Eng. J. 471 (2023) 1-14. https://doi.org/10.1016/j.cej.2023.144611

M. Felischak, T. Wolff, L. Alvarado Perea, A. Seidel-Morgenstern, C. Hamel, Chem. Eng. Sci. 210 (2019) 1-9. https://doi.org/10.1016/j.ces.2019.115246

S. Wang, L. Zhang, P. Wang, X. Liu, Y. Chen, Z. Qin, M. Dong, J. Wang, L. He, U. Olsbye, W. Fan, Chem 8 (2022) 1376-1394. https://doi.org/10.1016/j.chempr.2022.01.004

V. Zacharopoulou, A. Lemonidou, Catalysts 8 (2017) 1-19. https://doi.org/10.3390/catal8010002

A. Payne, G. Garcia-Garcia, P. Styring, Green Chem. 25 (2023) 4029-4057. https://doi.org/10.1039/D2GC04721G

V. Zacharopoulou, A.A. Lemonidou, Mater. Today Proc. 5 (2018) 27511-27516. https://doi.org/10.1016/j.matpr.2018.09.070

R.F. Beims, V. Botton, L. Ender, D.R. Scharf, E.L. Simionato, H.F. Meier, W.R. Wiggers, Fuel 217 (2018) 175-184. https://doi.org/10.1016/j.fuel.2017.12.109

A. Goldbach, H. Meier, V. Wiggers, L. Chiarello, A. Barros, Chem. Ind. Chem. Eng. Q. 28 (2022) 1-8. https://doi.org/10.2298/CICEQ200810010G

M.A. Mohamed, Int. J. Res. Appl. Sci. Eng. Technol. (2017) 2971-2976. https://doi.org/10.22214/ijraset.2017.11410

E.S. Ramos, D. Zimmermann, R.F. Beims, L.M. Chiarello, V. Botton, E.L. Simionato, V.R. Wiggers, Environ. Prog. Sustainable Energy 39 (2020) 1-6. https://doi.org/10.1002/ep.13441

T. Kraiem, A.B. Hassen, H. Belayouni, M. Jeguirim, Sci. Pollut. Res., 24, 9951, 2017. https://doi.org/10.1007/s11356-016-7704-z.

B. Periyasamy, Fuel, 158, 479, 2015. https://doi.org/10.1016/j.fuel.2015.05.066.

C. Rabbat, S. Awad, A. Villot, Y. Andres, Waste Biomass Valorization 14 (2023) 2061-2083. https://doi.org/10.1007/s12649-022-01989-2

V. Botton, D.R. Scharf, E.L. Simionato, V.R. Wiggers, L. Ender, H.F. Meier, A.A. Chivanga Barros, Quim. Nova 35 (2012) 677-682. https://doi.org/10.1590/S0100-40422012000400004

M. Konig, L.M. Chiarello, L. Curbani, V. Botton, V.R. Wiggers, L. Ender, Ind. Crops Prod. 201 (2023) 1-7. https://doi.org/10.1016/j.indcrop.2023.116931

R.F. Beims, V. Botton, L. Ender, D.R. Scharf, E.L. Simionato, H.F. Meier, W.R. Wiggers, Data Brief 17 (2018) 442–451. https://doi.org/10.1016/j.dib.2018.01.054

M.J. Suota, E.L. Simionatto, D.R. Scharf, H.F. Meier, V.R. Wiggers, Energy Fuels 33 (2019) 9886–9894. https://doi.org/10.1021/acs.energyfuels.9b01971

G. H. Wienhage, E. S. Ramos, L. M. Chiarello, V. Botton, V. R. Wiggers, Angolan Miner. Oil Gas J. 2 (2021) 21-27. https://doi.org/10.47444/amogj.v2i2.4

A.S. Matheus, A.P.S. Francisco, P. Francisco, N. Manuela, A.A.C. Barros, Chem. Eng. Technol. 45 (2022) 1835-1841. https://doi.org/10.1002/ceat.202200171

N. Asikin-Mijan, H. V. Lee, J. C. Juan, A. R. Noorsaadahb, Y. H. Taufiq-Yap, RSC Advances. 7 (2017) 46445–46460. https://doi.org/10.1039/c7ra08061a.

R.O. Idem, S.P.R. Katikaneni, N.N. Bakhshi, Energy Fuels 10 (1996) 1150-1162. https://doi.org/10.1016/S0140-6701(97)82785-3

F. Yu, L. Gao, W. Wang, G. Zhang, J. Ji, J. Anal. Appl. Pyrolysis 104 (2013) 325-329. https://doi.org/10.1016/j.jaap.2013.06.017

Downloads

Published

01.11.2024

Issue

Section

Articles

How to Cite

Soybean oil pyrolysis in a continuous bench-scale reactor for light olefin production: Original scientific paper. (2024). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ240226033W

Most read articles by the same author(s)