Integrated neural network and Aspen Plus model for entrained flow gasification kinetics investigation
Original scientific paper
DOI:
https://doi.org/10.2298/CICEQ240430032BKeywords:
Syngas, optimization, simulation, machine learningAbstract
Entrained flow gasification is a well-established technology, however, the main obstacle in process design is complex gasification mechanism, since numerous phenomena at extreme process conditions take place simultaneously. This study is focused on integrated thermodynamic and artificial neural network approach (ANN) for entrained flow gasification kinetics investigation. Data on 102 feedstock materials composition was used in AspenPlus gasification simulation, where sensitivity analysis was performed for different equivalence ratio (0.1-0.7) and gasification temperature (1200-1500°C) values. For analyzed materials, optimal equivalence ratio range exist (usually 0.3-0.4), maximizing gasification efficiency. Obtained results were used in ANN development for each output variable (syngas composition, efficiency, heating value and carbon conversion). Matlab algorithm was used for determination of optimal number of neurons (1-20 range) in each ANN. High R2 values (>0.99) for all models suggested good agreement between simulated and predicted values. Genetic algorithm-based optimization studies for maximization of hydrogen content and cold gas efficiency result in mean ER value of 0.35 and 0.41, respectively, at temperature of 1200°C. Yoon interpretation method was used for quantifying relative impacts of each input variable on syngas content and gasification efficiency. Proposed approach represents a powerful tool which can facilitate investigation of entrained flow gasification and process design.
References
H. Ritchie, P. Rosado, M. Roser, Energy Production and Consumption, https://ourworldindata.org/energy-production-consumption [accessed 7 May 2024].
IEA, World Energy Outlook 2022, https://www.iea.org/reports/world-energy-outlook-2022 [accessed 7 May 2024].
M.N. Dudin, E.E. Frolova, O.V. Protopopova, O. Mamedov, S.V. Odintsov, 6 (2019) 1704. https://doi.org/10.9770/jesi.2019.6.4(11).
C.-F. Schleussner, J. Rogelj, M. Schaeffer, T. Lissner, R. Licker, E.M. Fischer, R. Knutti, A. Levermann, K. Frieler, W. Hare, Nat Clim Chang 6 (2016) 827–835. https://doi.org/10.1038/nclimate3096.
L. Mundaca, L. Neij, A. Markandya, P. Hennicke, J. Yan, Appl Energy 179 (2016) 1283–1292. https://doi.org/10.1016/j.apenergy.2016.08.086.
H.B. Goyal, D. Seal, R.C. Saxena, 12 (2008) 504–517. https://doi.org/10.1016/j.rser.2006.07.014.
V. Kirubakaran, V. Sivaramakrishnan, R. Nalini, T. Sekar, M. Premalatha, P. Subramanian, 13 (2009) 179–186. https://doi.org/10.1016/j.rser.2007.07.001.
V. Tola, A. Pettinau, Appl Energy 113 (2014) 1461–1474. https://doi.org/10.1016/j.apenergy.2013.09.007.
J. Parraga, K.R. Khalilpour, A. Vassallo, 92 (2018) 219–234. https://doi.org/10.1016/j.rser.2018.04.055.
R. Rauch, J. Hrbek, H. Hofbauer, Wiley Interdiscip Rev Energy Environ 3 (2014) 343–362. https://doi.org/10.1002/9781118957844.ch7.
A. Molino, S. Chianese, D. Musmarra, 25 (2016) 10–25. https://doi.org/10.1016/j.jechem.2015.11.005.
M. Lapuerta, J.J. Hernández, A. Pazo, J. López, 89 (2008) 828–837. https://doi.org/10.1016/j.fuproc.2008.02.001.
U. Arena, 32 (2012) 625–639. https://doi.org/10.1016/j.wasman.2011.09.025.
J.J. Hernández, G. Aranda-Almansa, A. Bula, 91 (2010) 681–692. https://doi.org/10.1016/j.fuproc.2010.01.018.
M. Puig-Arnavat, J.C. Bruno, A. Coronas, 14 (2010) 2841–2851. https://doi.org/10.1016/j.rser.2010.07.030.
E. Henrich, F. Weirich, Environ Eng Sci 21 (2004) 53–64. https://doi.org/10.1089/109287504322746758.
T. Xu, Y. Wu, S. Bhattacharya, Int J Min Sci Technol 31 (2021) 473–481. https://doi.org/10.1016/j.ijmst.2021.03.001.
F. Qian, X. Kong, H. Cheng, W. Du, W. Zhong, Ind Eng Chem Res 52 (2013) 1819–1828. https://doi.org/10.1021/ie301630x.
M. Vascellari, R. Arora, C. Hasse, 118 (2014) 369–384. https://doi.org/10.1016/j.fuel.2013.11.004.
G.-S. Liu, H.R. Rezaei, J.A. Lucas, D.J. Harris, T.F. Wall, 79 (2000) 1767–1779. https://doi.org/10.1016/S0016-2361(00)00037-5.
A. Tremel, H. Spliethoff, 107 (2013) 170–182. https://doi.org/10.1016/j.fuel.2013.01.062.
M. Vascellari, D.G. Roberts, D.J. Harris, C. Hasse, 152 (2015) 58–73. https://doi.org/10.1016/j.fuel.2015.01.038.
I. Adeyemi, I. Janajreh, Renew Energy 82 (2015) 77–84. https://doi.org/10.1016/j.renene.2014.10.073.
M.A. Kibria, P. Sripada, S. Bhattacharya, 196 (2020) 117073. https://doi.org/10.1016/j.energy.2020.117073.
M. Al-Zareer, I. Dincer, M.A. Rosen, 115 (2016) 1–18. https://doi.org/10.1016/j.cherd.2016.09.009.
M. Pérez-Fortes, A.D. Bojarski, E. Velo, J.M. Nougués, L. Puigjaner, 34 (2009) 1721–1732. https://doi.org/10.1016/j.energy.2009.05.012.
Y. Lu, Z. Li, M. Zhang, C. Huang, Z. Chen, Energy Convers Manag 245 (2021) 114627. https://doi.org/10.1016/j.enconman.2021.114627.
Z. Dai, X. Gong, X. Guo, H. Liu, F. Wang, Z. Yu, 87 (2008) 2304–2313. https://doi.org/10.1016/j.fuel.2007.12.005.
D. Barba, M. Prisciandaro, A. Salladini, G.M. Di Celso, 90 (2011) 1402–1407. https://doi.org/10.1016/j.fuel.2010.12.022.
Ö.Ç. Mutlu, T. Zeng, Chem Eng Technol 43 (2020) 1674–1689. https://doi.org/10.1002/ceat.202000068.
M. Ozonoh, B.O. Oboirien, A. Higginson, M.O. Daramola, Renew Energy 145 (2020) 2253–2270. https://doi.org/10.1016/j.renene.2019.07.136.
H.O. Kargbo, J. Zhang, A.N. Phan, Appl Energy 302 (2021) 117567. https://doi.org/10.1016/j.apenergy.2021.117567.
M. Puig-Arnavat, J.A. Hernández, J.C. Bruno, A. Coronas, Biomass Bioenergy 49 (2013) 279–289. https://doi.org/10.1016/j.biombioe.2012.12.012.
D. Baruah, D.C. Baruah, M.K. Hazarika, Biomass Bioenergy 98 (2017) 264–271. https://doi.org/10.1016/j.biombioe.2017.01.029.
R. Mikulandrić, D. Lončar, D. Böhning, R. Böhme, M. Beckmann, Energy Convers Manag 87 (2014) 1210–1223. https://doi.org/10.1016/j.enconman.2014.03.036.
S. Ascher, W. Sloan, I. Watson, S. You, Appl Energy 320 (2022) 119289. https://doi.org/10.1016/j.apenergy.2022.119289.
F. Kartal, U. Özveren, 209 (2020) 118457. https://doi.org/10.1016/j.energy.2020.118457.
S. Safarian, S.M.E. Saryazdi, R. Unnthorsson, C. Richter, 213 (2020) 118800. https://doi.org/10.1016/j.energy.2020.118800.
J. Chen, J. Liang, Z. Xu, E. Jiaqiang, Energy Convers Manag 226 (2020) 113497. https://doi.org/10.1016/j.enconman.2020.113497.
H. Shahbeik, W. Peng, H.K.S. Panahi, M. Dehhaghi, G.J. Guillemin, A. Fallahi, H. Amiri, M. Rehan, D. Raikwar, H. Latine, 167 (2022) 112833. https://doi.org/10.1016/j.rser.2022.112833.
M. Shahbaz, T. Al-Ansari, M. Inayat, S.A. Sulaiman, P. Parthasarathy, G. McKay, 134 (2020) 110382. https://doi.org/10.1016/j.rser.2020.110382.
A. Ozyuguran, A. Akturk, S. Yaman, 214 (2018) 640–646. https://doi.org/10.1016/j.fuel.2017.10.082.
A. Gómez-Barea, P. Ollero, B. Leckner, 103 (2013) 42–52. https://doi.org/10.1016/j.fuel.2011.04.042.
Y. Yoon, G. Swales Jr, T.M. Margavio, 44 (1993) 51–60. https://doi.org/10.1057/jors.1993.6.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Dario Balaban, Jelena Lubura, Predrag Kojić
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
How to Cite
Funding data
-
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Grant numbers 451-03-65/2024-03/200134