OPTIMIZATION OF ULTRASOUND-ASSISTED EXTRACTION OF (POLY)PHENOLIC COMPOUNDS FROM BLUEBERRY (Vaccinium myrtillus) LEAVES

Original scientific paper

Authors

DOI:

https://doi.org/10.2298/CICEQ240207028V

Keywords:

anthocyanins, blueberry, extraction, flavonoids, optimization, (poly)phenols

Abstract

The present paper aims to discover the optimal conditions for ultrasound-assisted extraction (UAE) of (poly)phenolic chemicals from blueberry (Vaccinium myrtillus) leaves. UAE was performed under the following process conditions: temperature: 25—65 °C, ethanol concentration in the extraction solvent: 30—90 vol.%, and solid-to-solvent ratio: 1:15–1:45 w/v. Statistical analysis was performed using Design-Expert software, using the Box-Behnken design. The study's responses were the content of total (poly)phenols, flavonoids, and anthocyanins in the derived extracts. The results indicated that the corresponding response surface models were highly statistically significant (p < 0.0001) and sufficient to describe and predict the content of total (poly)phenols, the content of flavonoids, and the content of anthocyanins with R2 of 0.965, 0.980 and 0.972, respectively. The optimal conditions for the extraction are for total (poly)phenols 48.4 °C, 51.3 vol.% ethanol, and 1:43.8 w/v solid-to-solvent ratio; flavonoids 58.5 °C, 48.0 vol.% ethanol, and 1:29.8 w/v ratio; and anthocyanins 64.2 °C, 73.5 vol.% ethanol, and 1:44.7 w/v ratio. The use of UAE enhances extraction yields by increasing the release of bioactive compounds, while the application of the Box-Behnken design allows for precise determination of optimal extraction parameters, thereby achieving maximum yields and efficiency.

References

[1] W. Chu, H. Gao, S. Cao, X. Fang, H. Chen, S. Xiao, Food Chem. 219 (2017) 436—442. https://doi.org/10.1016/j.foodchem.2016.09.186.

[2] M. Morita, Y. Naito, E. Niki,T. Yoshikawa, J. Berry Res. 7 (2017) 1—9. https://doi.org/10.1016/j.foodchem.2017.05.157.

[3] B.S. Luo, R.H. Gu, E. Kennelly, C.L. Long, Curr. Med. Chem. 25 (2017) 5168—5176. https://doi.org/10.2174/0929867324666171003122502.

[4] M. Grace, J. Xiong, D. Esposito, M. Ehlenfeldt, M. Lila, Food Chem. 277 (2019) 336—346. https://doi.org/10.1016/j.foodchem.2018.10.101.

[5] R. Eladwy, E. Mantawy, W. El-Bakly, M. Fares, L. Ramadan, S. Azab, Phytomedicine 51 (2018) 84—93. https://doi.org/10.1016/j.phymed.2018.10.009.

[6] J. Paes, R. Dotta, G. Barbero, J. Martinez, J. Supercrit. Fluids 95 (2014) 8—14. https://doi.org/10.1016/j.supflu.2014.07.025.

[7] D. Li, B. Li, Y. Ma, X. Sun, Y. Lin, X. Meng, J. Food Compos. Anal. 62 (2017) 84—93. https://doi.org/10.1016/j.jfca.2017.03.006.

[8] N. Seeram, L. Adams, Y. Zhang, R. Lee, D. Sand, H. Scheuller, D. Heber, J. Agric. Food Chem. 54 (2006) 3929—3939. https://doi.org/10.1021/jf061750g.

[9] H. Wang, G. Cao, R. Prior, J. Agric. Food Chem. 45 (1997) 304—309. https://doi.org/10.1021/jf960421t.

[10] W. Kalt, C. Forney, A. Martin, R. Prior, J. Agric. Food Chem. 47 (1999) 4638—4644. https://doi.org/10.1021/jf990266t.

[11] W. Yang, Y. Guo, M. Liu, X. Chen, X. Xiao, S. Wang, P. Gong, Y. Ma, F. Chen, J. Funct. Foods 88 (2022) 104864. https://doi.org/10.1016/j.jff.2021.104864.

[12] Y. Li, B. Li, L. Geng, Eur. Food Res. Technol. 233 (2011) 897—903. https://doi.org/10.1007/s00217-011-1572-z.

[13] K. Skupien, J. Oszmianski, D. Kostrzewa-Nowak, J. Tarasiuk, Cancer Lett. 236 (2006) 282—291. https://doi.org/10.1016/j.canlet.2005.05.018.

[14] S. Nakama, C. Ishikawa, S. Nakachi, N. Mori, Int. J. Oncol. 38 (2011) 1163—1173. https://doi.org/10.3892/ijo.2011.939.

[15] M. Ehlenfeldt, R. Prior, J. Agric. Food Chem., 49 (2001) 2222—2227. https://doi.org/10.1021/jf0013656.

[16] M. Gurjar, S. Ali, M. Akhtar, K. Singh, Agric. Sci. 3 (2012) 425—433. https://doi.org/10.4236/as.2012.33050.

[17] C. Harris, A. Burt, A. Saleem, P. Mai Le, L. Martineau, P. Haddad, S. Bennet, J. Arnason, PCA 18 (2007) 161—169. https://doi.org/10.1002/pca.970.

[18] Y. Matsuo, Y. Fujita, S. Ohnishi, T. Tanaka, H. Hirabaru, T. Kai, H.Sakaida, S. Nishizono, I. Kouno, Food Chem. 121 (2010) 1073—1079. https://doi.org/10.1016/j.foodchem.2010.01.052.

[19] T. Wang, N. Guo, S. Wang, P. Kou, C. Zhao, Y. Fu, Food Bioprod. Process. 108 (2018) 69—80. https://doi.org/10.1016/j.fbp.2018.01.003.

[20] J. Rocha, F. Procopio, A. Mendonca, L. Vieira, I. Perrone, F. Barros, P. Stringheta, JFST 38 (2018) 45—53. https://doi.org/10.1590/1678-457X.36316.

[21] J. Xie, M. Chen, T. Ren, Q. Zheng, Environ. Technol. Innov. 31 (2023) 103147. https://doi.org/10.1016/j.eti.2023.103147.

[22] X. Zhang, S. Wang, Q. Wu, Q. Wu, M. Battino, F. Giamperi, W. Bai, L. Tian, Food Chem. X 16 (2022) 100476. https://doi.org/10.1016/j.fochx.2022.100476.

[23] M. Santos-Martin, J. Cubero-Cardoso, R. González-Domínguez, R. Cortés-Triviño, A. Sayago, J. Urbano, A. Fernández-Recamales, Biomass Bioenergy 175 (2023) 106882. https://doi.org/10.1016/j.biombioe.2023.106882.

[24] T. Hu, Y. Guo, Q. Zhou, X. Zhong, L. Zhu, J. Piao, J. Chen, J. Jiang, J. Food Sci. 77 (2012) 975—982. https://doi.org/10.1111/j.1750-3841.2012.02869.x.

[25] A. Andres, M. Petron, A. Lopez, M. Timon, Foods 9 (2020) 1398. https://doi.org/10.3390/foods9101398.

[26] J. Salar, S. Purewal, M. Bhatti, Resour.-Effic. Technol. 2 (2016) 148—157. https://doi.org/10.1016/j.reffit.2016.08.002.

[27] M. Santos-Martin, J. Cubero-Cardoso, R. González-Domínguez, R. Cortés-Triviño, A. Sayago, J. Urbano, A. Fernández-Recamales, Biomass Bioenergy 175 (2023) 106882. https://doi.org/10.1016/j.biombioe.2023.106882.

[28] O. Soufi, L. Medouni-Haroune, M.Bachirbey, S. Medouni-Adrar, F. Idir, T. Heddad, L. Ouldsaadi, C. Romero, K. Madani, L. Makhlouf-Boulekbache, Sustain. Chem. Pharm. 36 (2023) 101260. https://doi.org/10.1016/j.scp.2023.101260.

[29] International Organization for Standardization, "ISO 14502-1:2005 Determination of substances characteristic of green, black tea — Part 1: Content of total polyphenols

in tea — Colorimetric method using Folin-Ciocalteu reagent" 2005.

[30] P. Smolinski-Savi, L. Dos Santos, A. Goncalves, S. Biesek, C. Lima, Demetra 12 (2017) 275—288. https://doi.org/10.12957/demetra.2017.22391.

[31] M. Giusti, R. Wrolstad, in Current Protocols in Food Analytical Chemistry, John Wiley & Sons, New York (2001) F1.2.1-F1.2.13. https://doi.org/10.1002/0471142913.faf0102s00.

[32] N. Vasiljević, V. Mićić, M. Perušić, M. Tomić, S. Panić, D. Kostić, OUAC, 35 (2024) 27—35. https://doi.org/10.2478/auoc-2024-0004.

[33] L. Sedaghat Boroujeni, M. Ghavami, Z. Piravi Vanak, A. Ghasemi Pirbalouti, Food Sci. Technol. 40 (2020) 322—330. https://doi.org/10.1590/fst.10919.

[34] W. Routray, V. Orsat, Ind. Crops. Prod. 58 (2014) 36—45. https://doi.org/10.1016/j.indcrop.2014.03.038.

[35] X. Ying, J. Phys. Conf. Ser. 1168 (2019) 022022. https://doi.org/10.1088/1742-6596/1168/2/022022.

[36] X. Bai, L. Zhou, S. Cang, Y. Liu, J. Liu, X. Feng, R. Fan, Molecules 28 (2023) 3610. https://doi.org/10.3390/molecules28083610.

[37] F. Chemat, M. Abert-Vian, A. Fabiao-Tixier, J. Strube, L. Uhlenbrock, V. Gunjevic, G. Cravotto, TrAC, Trends Anal. Chem. 118 (2019) 248—263. https://doi.org/10.1016/j.trac.2019.05.037.

[38] M. Herrero, M. Plaza, A. Cifuentes, E. Ibenez, J. Chromatogr. A 1217 (2010) 2512—2520. https://doi.org/10.1016/j.chroma.2009.11.032.

[39] J. Yuan, H. Li, W. Tao, Q. Han, H. Dong, J. Zhang, Y. Jing, Y. Wang, Q. Xiong, T. Xu, Ultrason. Sonochem. 68 (2020) 105192. https://doi.org/10.1016/j.ultsonch.2020.105192.

[40] X. Zheng, X. Xu, , C. Liu, Y. Sun, Z. Lin, H. Liu, Sep. Purif. Technol. 104 (2013) 17—25. https://doi.org/10.1016/j.seppur.2012.11.011.

[41] G. Spigno, L. Tramelli, D. De Faveri, J. Food Eng. 81 (2007) 200—208. https://doi.org/10.1016/j.jfoodeng.2006.10.021.

[42] V. Biasi, E. Huber, P. Barreto, Food Technol. 57 (2022) 100789. https://doi.org/10.1590/S1678-3921.pab2022.v57.02537.

[43] S. Sai-Ut, P. Kingwascharapong, M.R. Mazumder, J. Agric. Food Res. 14 (2023) 100888. https://doi.org/10.1016/j.jafr.2023.100888.

[44] H. Liu, H. Wu, Y. Wang, F. Wang, X. Liu, J. Zhou, Appl. Biol. Chem. 64 (2021) 64—78. https://doi.org/10.1186/s13765-021-00649-8.

[45] Y. Yang, J. Li, Y. Zu, Y. Fu, M. Luo, N. Wu, X. Liu, Food Chem. 122 (2010) 373—380. https://doi.org/10.1016/j.foodchem.2010.02.061.

[46] K. Gunathilake, K. Ranaweera, H. Rupasinghe, Food Sci. Nutr. 7 (2019) 528—536. https://doi.org/10.1002/fsn3.832.

Downloads

Published

26.07.2024 — Updated on 15.04.2025

Issue

Section

Articles

How to Cite

OPTIMIZATION OF ULTRASOUND-ASSISTED EXTRACTION OF (POLY)PHENOLIC COMPOUNDS FROM BLUEBERRY (Vaccinium myrtillus) LEAVES: Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly, 31(3), 207-217. https://doi.org/10.2298/CICEQ240207028V

Similar Articles

41-50 of 51

You may also start an advanced similarity search for this article.