Application of waste raw materials as a reinforcement for protective coatings based on pyrophyllite

Original scientific paper

Authors

  • Marko Pavlović Innovation Center of Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11000 Belgrade, Serbia https://orcid.org/0000-0002-7098-6421
  • Marina Dojčinović Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia https://orcid.org/0000-0002-8158-3468
  • Jasmina Nikolić Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia https://orcid.org/0000-0002-9985-0819
  • Anja Terzić Institute for Testing of Materials, Bulevar vojvode Mišića 43, 11000 Belgrade, Serbia
  • Vladimir Pavićević Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
  • Saša Drmanić Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia https://orcid.org/0000-0002-9985-0819
  • Enita Kurtanović AD HARBI, Tvornička 3, 71210 Ilidža, Sarajevo, Bosna i Hercegovina

DOI:

https://doi.org/10.2298/CICEQ240410029P

Keywords:

construction materials, waste resources, metal substrate, microstructure, cavitation erosion

Abstract

In this study, pyrophyllite was used for the first time in the composition of protective refractory coatings together with supplementary waste resources. The proposed refractory coatings are applicable for metallic and non-metallic structures, with the option of using them to protect machinery components in the chemical industry, metallurgy, and mining. Given that pyrophyllite has a low hardness, the goal was to improve the coating's resistance to cavitation erosion by adding 20 wt.% of hard refractory materials, i.e., crushed and micronized waste bricks based on mullite and corundum, respectively. Previous studies have demonstrated that protective coatings using a pyrophyllite filler have refractory qualities but insufficient resistance to cavitation erosion. As a result, the composition of refractory coatings, the preparation techniques, and the coating manufacturing process were altered. This study presents a simple method for combining conventional coatings made of refractory fillers (primary resource: pyrophyllite) with waste materials (mullite brick and corundum brick) used as reinforcement in protective refractory coatings for metal and non-metal structural elements that are highly resistant to cavitation erosion.

References

Global Status Report for Buildings and Construction: https://www.unep.org/resources/publication/2022-global-status-report-buildings-and-construction (accessed on 02.02.2024)

S. Dora, K.M. Mini, J. Energy Storage 72 (2023) 108550. https://doi.org/10.1016/j.est.2023.108550

A. Liebringshausen, P. Eversmann, A. Göbert, J. Build. Engin. 80 (2023) 107696. https://doi.org/10.1016/j.jobe.2023.107696

Y. Ettahiri, D. M. Samuel, L. Bouna, A. Khali, A. Aziz, A. Benlhachemi, L. Pérez-Villarejo, W. Kriven, J. Build. Eng. 80 (2023) 108021. https://doi.org/10.1016/j.jobe.2023.108021

Y. Ettahiri, L.n Bouna, J. Hanna, A. Benlhachemi, H. L. Pilsworth, A. Bouddouch, B. Bakiz, Mater.s Chem. Physics 296 (2023) 127281. https://doi.org/10.1016/j.matchemphys.2022.127281

A.P. Galvín, S. Sabrina, B. Auxi, A. Peña, A. López-Uceda, J. Environ. Manage. 344 (2023) 118409. https://doi.org/10.1016/j.jenvman.2023.118409

E. Marsh, J. Orr, T. Ibell, Energy Build. 251 (2021) 111340. https://doi.org/10.1016/j.enbuild.2021.111340

S. Mohammadnejad, J. Provis, J. van Deventer, Hydrometallurgy 146 (2014) 154-163. https://doi.org/10.1016/j.hydromet.2014.04.007

R. Wardle, G.W. Brindley, Am. Mineral. 57 (1972) 732 -750 (https://rruff.geo.arizona.edu/doclib/am/vol57/AM57_732.pdf, accessed 03.04.2024)

J. Temuujin, K. Okada, T. Jadambaa, K. MacKenzie, J. Amarsana, J. Eur. Ceram. Soc. 23 (2003) 1277-1282, https://doi.org/10.1016/S0955-2219(02)00297-2.

C. Maqueda, J.L.P. Rodríguez, A. Justo, Analyst 112 (1987) 1085-1086. https://doi.org/10.1039/AN9871201085

Y. Ettahiri, L. Bouna, A. Brahim, A. Benlhachemi, B. Bakiz, P. Sánchez-Soto, D. Eliche-Quesada, L.Pérez-Villarejo, Appl. Mater. Today 36 (2024) 102048. https://doi.org/10.1016/j.apmt.2023.102048

K. Zhao, W. Yana, X. Wang, B. Hui, G. Gu, H. Wang, Int. J. Miner. Process. 161 (2017) 78-82. https://doi.org/10.1016/j.minpro.2017.02.015

X. Pan, Z. Shi, C. Shi, T. Ling, N. Li, Constr. Build. Mater. 132 (2017) 578-5910. https://doi.org/10.1016/j.conbuildmat.2016.12.025

L. Bouna, A. Ait El Fakir, Y. Ettahiri, H. Abara, A. Jada, K. Draoui, A. Benlhachemi, M. Ezahri, Mater. Chem. Physics 314 (2024) 128858. https://doi.org/10.1016/j.matchemphys.2023.128858

X. Lu, L. Wang, C. Chen, J. Chen, J. Zhou, J. Deng, Constr. Build. Mater. 400 (2023) 132849 https://doi.org/10.1016/j.conbuildmat.2023.132849

J.B. Aguiar, C. Júnior, Constr. Build. Mater. 49 (2013) 478-483. https://doi.org/10.1016/j.conbuildmat.2013.08.058

M. Shariatmadar, P. Gholamhosseini, Z. Abdorrezaee, S. Ghorbanzadeh, S. Feizollahi, F.S. Hosseini, F. Azad Shahraki, M. Mahdavian, Surf. Coat. Technol. (2024) 130501 https://doi.org/10.1016/j.surfcoat.2024.130501

X. Liu, Prog. Org. Coat. 149 (2020) 105892 https://doi.org/10.1016/j.porgcoat.2020.105892

H. Qu, M. Feng, M. Li, D. Tian, Y. Zhang, X. Chen, G. Li, Mater. Today Commun. 37 (2023) 107284 https://doi.org/10.1016/j.mtcomm.2023.107284

S. Gu, H. Shi, J. Li, H. Xu, I. I. Udoh, F. Liu, E. Han, Prog. Org. Coat. 183 (2023) 107789 https://doi.org/10.1016/j.porgcoat.2023.107789

F. Sun, J. Fu, Y. Peng, X. Jiao, H. Liu, F. Du, Y. Zhang, Prog. Org. Coat. 154 (2021) 106187 https://doi.org/10.1016/j.porgcoat.2021.106187

S.A.T. Nejad, S. Amanian, E. Alibakhshi, M. Hajisoltani, S.A. Haddadi, M. Arjmand, B. Ramezanzadeh, M. Mahdavian, Prog. Org. Coat. 188 (2024) 108195. https://doi.org/10.1016/j.porgcoat.2023.108195

W. Merks, Clausthal-Zellerfeld, Germany, (1985). (https://search.worldcat.org/title/607758613, accessed on 03.04.202421

J. Santamarina, G. Cho,Soil Behavior: The Role of Particle Shape. Conference on Advances in Geotechnical Engineering, London, 29-31 (2004) 604-617.

https://doi.org/10.1061/40659(2003)2

. Z. Hossain, I.L. Fabricius, H.F. Christensen, Leading Edge 28 (2009) 86–88. https://doi.org/10.1190/1.3064151

A. Terzić, D. Radulović, M. Pezo, J. Stojanović, L. Pezo, Z. Radojević, Lj. Andrić, Constr. Build. Mater. 258 (2020) 119721. https://doi.org/10.1016/j.conbuildmat.2020.119721

M. Pavlović, M. Dojčinović, M. Harbinja, A. Hođić, M. Stojanović, Z. Čeganjac, Z.Aćimović, Struct. Integ. Life 23:3 (2023) 257-260. (http://divk.inovacionicentar.rs/ivk/ivk23/OF2303-5s.html, accessed on 03.04.2024.)

M. Pavlović, M. Dojčinović, M. Harbinja, A. Hođić, D. Radulović, M. Stojanović, Z. Aćimović,in Proceedings of the 54th International October Conference on Mining and Metallurgy (2023) 357-360. (https://ioc.tfbor.bg.ac.rs/public/2023/Proceedings_IOC_2023.pdf, accessed on 03.04.2024)

M. Pavlović, M. Dojčinović: Kavitaciona oštećenja refrakcionih materijala, Akademska misao, Belgrade, (2020), p.165. ISBN 978-86-7466-823-8. (https://akademska-misao.rs/product/kavitaciona-ostecenja-vatrostalnih-materijala/ accessed on 01.03.2024)

ASTM G32-16 Red Standard Test Method for Cavitation Erosion Using Vibratory Apparatus (Standard + Redline PDF Bundle), https://webstore.ansi.org/standards/astm/astmg3216red (accessed 15.03.2024).

Jmicro Vision program: https://jmicrovision.github.io/(accessed 15.03.2024)

Downloads

Published

26.07.2024

Issue

Section

Articles

How to Cite

Application of waste raw materials as a reinforcement for protective coatings based on pyrophyllite: Original scientific paper. (2024). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ240410029P

Funding data

Similar Articles

31-40 of 55

You may also start an advanced similarity search for this article.