Gas-liquid dispersion agitated by closed turbine type impeller

Original scientific paper

Authors

  • Masanori Yoshida Department of Applied Sciences, Muroran Institute of Technology, Muroran, Japan
  • Toshiki Kosaka Department of Applied Sciences, Muroran Institute of Technology, Muroran, Japan
  • Yoshiki Mukai Department of Applied Sciences, Muroran Institute of Technology, Muroran, Japan
  • Koichi Nakahara Department of Applied Sciences, Muroran Institute of Technology, Muroran, Japan
  • Reno Kiyota Department of Applied Sciences, Muroran Institute of Technology, Muroran, Japan

DOI:

https://doi.org/10.2298/CICEQ240411027Y

Keywords:

gas-liquid agitation, closed turbine type impeller, gas cavity, impeller region, power characteristics

Abstract

Gas-liquid agitation by a turbine type impeller having shrouds structurally (closed disk turbine impeller, CDT) was studied by examination of the flow behavior of gas-liquid mixture in the impeller region, with energy consideration based on the impeller power characteristics in the gassed liquid. The way in formation of the gas cavities and dispersion as the gas bubbles using the CDT differed from that using a conventional disk turbine impeller (open impeller, ODT). The difference in relative power consumption, i.e., ratio of gassed to ungassed power consumption, between the CDT and ODT was related to the configurations of the gas cavities.

References

G.M. Mule, A.A. Kulkarni, Chem. Ind. Dig. July (2015) 58-64. https://www.researchgate.net/publication/358901096

H.R. Lee, Y.J. Huh, C.S. Choi, W.H. Lee, Kor. J. Chem. Eng. 9 (1992) 164-168. https://doi.org/10.1007/BF02705134

V.V. Ranade, V.R. Deshpande, Chem. Eng. Sci. 54 (1999) 2305-2315. https://doi.org/10.1016/S0009-2509(98)00301-7

V.V. Ranade, M. Perrard, C. Xuereb, N. Le Sauze, J. Bertrand, Chem. Eng. Res. Des. 79 (2001) 957-964. https://doi.org/10.1205/02638760152721190

M. Mochizuki, H. Sato, Y. Doida, Y. Saita, T. Amanuma, T. Takahashi, Kagaku Kogaku Ronbunshu 34 (2008) 557-561. https://doi.org/10.1252/kakoronbunshu.34.557

F. Maluta, A. Paglianti, G. Montante, Chem. Eng. Sci. 241 (2021) 116677. https://doi.org/10.1016/j.ces.2021.116677

C. Yang, H. Lu, B. Wang, Z. Xu, B. Liu, Chem. Eng. Sci. 280 (2023) 119058. https://doi.org/10.1016/j.ces.2023.119058

F. Maluta, F. Alberini, A. Paglianti, G. Montante, Chem. Eng. Res. Des. 194 (2023) 582-596. https://doi.org/10.1016/j.cherd.2023.05.006

R. Sardeing, J. Aubin, C. Xuereb, Chem. Eng. Res. Des. 82 (2004) 1589-1596. https://doi.org/10.1205/cerd.82.12.1589.58030

Z. Zheng, D. Sun, J. Li, X. Zhan, M. Gao, Chem. Eng. Res. Des. 130 (2018) 199-207. https://doi.org/10.1016/j.cherd.2017.12.021

D. Gu, Y. Mei, L. Wen, X. Wang, Z. Liu, J. Taiwan Inst. Chem. Eng. 121 (2021) 20-28. https://doi.org/10.1016/j.jtice.2021.03.038

D. Li, W. Chen, Process Saf. Environ. Prot. 158 (2022) 360-373. https://doi.org/10.1016/j.psep.2021.12.019

F. Saito, A.W. Nienow, S. Chatwin, I.P.T. Moore, J. Chem. Eng. Jpn. 25 (1992) 281-287. https://doi.org/10.1252/jcej.25.281

J. Zhao, Z. Gao, Y. Bao, Chin. J. Chem. Eng. 19 (2011) 232-242. https://doi.org/10.1016/S1004-9541(11)60160-2

B.H. Junker, M. Stanik, C. Barna, P. Salmon, E. Paul, B.C. Buckland, Bioprocess Eng. 18 (1998) 401-412. https://doi.org/10.1007/s004490050463

M. Cooke, P.J. Heggs, Chem. Eng. Sci. 60 (2005) 5529-5543. https://doi.org/10.1016/j.ces.2005.05.018

G. Montante, A. Paglianti, Chem. Eng. J. 279 (2015) 648-658. http://dx.doi.org/10.1016/j.cej.2015.05.058

D. Gu, L. Wen, H. Xu, M. Ye, J. Taiwan Inst. Chem. Eng. 143 (2023) 104688. https://doi.org/10.1016/j.jtice.2023.104688

M. Yoshida, H. Ebina, K. Ishioka, K. Oiso, H. Shirosaki, R. Tateshita, Int. J. Chem. React. Eng. 15 (2017) 20160198. https://doi.org/10.1515/ijcre-2016-0198

M. Yoshida, H. Ebina, H. Shirosaki, K. Ishioka, K. Oiso, Braz. J. Chem. Eng. 32 (2015) 865-873. https://doi.org/10.1590/0104-6632.20150324s00003682

J.C. Middleton, in Mixing in the process industries, N. Harnby, M.F. Edwards, A.W. Nienow Eds., Butterworth-Heinemann, Oxford (1992), pp. 322-363. ISBN-13: 978-0750637602

W. Bruijn, K. van’t Riet, J.M. Smith, Trans. Inst. Chem. Eng. 52 (1974) 88-104. ISSN: 0046-9858

K. van’t Riet, J.M. Smith, Chem. Eng. Sci. 28 (1973) 1031-1037. https://doi.org/10.1016/0009-2509(73)80005-3

K. Brun, R. Kurz, Int. J. Rotating Mach. 1 (2005) 45-52. https://doi.org/10.1155/IJRM.2005.45

C. Wu, K. Pu, C. Li, P. Wu, B. Huang, D. Wu, Energy 246 (2022) 123394. https://doi.org/10.1016/j.energy.2022.123394

Downloads

Published

26.07.2024

Issue

Section

Articles

How to Cite

Gas-liquid dispersion agitated by closed turbine type impeller: Original scientific paper. (2024). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ240411027Y

Similar Articles

41-50 of 75

You may also start an advanced similarity search for this article.