Machine learning predictions on the output parameters of CRDI engines fueled with ternary blend

Original scientific paper

Authors

  • Karthikeyan Subramanian Department of Mechanical Engineering, Annamalai University, Chidambaram, Tamil Nadu, India https://orcid.org/0000-0002-8923-6831
  • Sathiyagnanam Amudhavalli Paramasivam Department of Mechanical Engineering, Govt. College of Engineering (Deputed from Annamalai University), Salem, Tamil Nadu, India https://orcid.org/0000-0003-4741-4860
  • Damodharan Dillikannan Department of Mechanical Engineering, Jeppiaar Engineering College, Chennai, Tamil Nadu, India https://orcid.org/0000-0002-8804-6913

DOI:

https://doi.org/10.2298/CICEQ240303025S

Keywords:

Biodiesel, methyl acetate, CRDI engine, EGR, machine learning algorithms

Abstract

This study aims to employ a machine learning algorithm (MLA) to predict CRDI engine emissions and performance using alternative feedstock. This study started with a diesel-SCOME- Methyl Acetate ternary mix. The engine was tested with fuel injection time (FIT) of 23°, 21°, and 19° bTDC with exhaust gas recirculation (EGR) levels of 10%, 15%, and 20% at estimated power productivity. Retard injection time and increasing EGR rates reduced in-cylinder peak pressure. Operating conditions with the maximum BTE were 21° bTDC and 10% EGR. Adjusting injection time and EGR reduced nitrogen oxide relative to the baseline. Smoke opacity was 1% lower at 21° bTDC and 10% exhaust gas recirculation than in conventional diesel operation. Retard injection time and exhaust gas recirculation increased HC and CO emissions. However, MLAs predict CI engine operation and discharge properties. The long short-term memory (LSTM) Model predicts engine output characteristics with a squared correlation (R2) of 0.92 to 0.961. At the same time, mean relative error (MRE) values ranged from 1.74 to 4.68%. These results show that the LSTM models provide superior predictive capabilities in this investigation, particularly when considering numerous variables to analyse engine responses.

References

B. Ashok, K. Nanthagopal, B. Saravanan, K. Azad, D. Patel, B. Sudarshan, R.Aaditya Ramasamy, Fuel 235 (2019) 984–994. https://doi.org/10.1016/j.fuel.2018.08.087

M.M. Khan, R.P. Sharma, A.K. Kadian, S.M.M. Hasnain, Mater. Sci. Energy Technol. 5 (2022) 81–98. https://doi.org/10.1016/j.mset.2021.12.004.

M. Jayapal, K.G. Radhakrishnan, Energy Environ. 33 (2022) 85–106. https://doi.org/10.1177/0958305X20985618

D. Damodharan, A.P. Sathiyagnanam, B. Rajesh Kumar, K.C. Ganesh, Environ. Sci. Pollut. Res. 25 (2018) 13611–13625. https://doi.org/10.1007/s11356-018-1558-5

M.V. De Poures, K. Gopal, A.P. Sathiyagnanam, B. Rajesh Kumar, D. Rana, S. Saravanan, D. Damodharan, Energy Sources, Part A. 42 (2020) 1772–1784. https://doi.org/10.1080/15567036.2019.1604888

M. Arulprakasajothi, N. Beemkumar, J. Parthipan, N. Raju Battu, Arab. J. Sci. Eng. 45 (2020) 563–574. https://doi.org/10.1007/s13369-019-04294-8

C. Ramakrishnan, P.K. Devan, R. Karthikeyan, Environ. Prog. Sustain. Energy 36 (2017) 248–258. https://doi.org/10.1002/ep.12484

K. Viswanathan, A. Paulraj, Energy Sources, Part A 45 (2023) 3216–3230. https://doi.org/10.1080/15567036.2020.1849451

A.I. EL-Seesy, Z. He, H. Hassan, D. Balasubramanian, Fuel 279 (2020) 118433. https://doi.org/10.1016/j.fuel.2020.118433

J. Preuß, K. Munch, I. Denbratt, Fuel 216 (2018) 890–897. https://doi.org/10.1016/j.fuel.2017.11.122

S. Raja. K.S, S.K. Srinivasan, K. Yoganandam, M. Ravi, nergy Sources, Part A (2021) 1–11. https://doi.org/10.1080/15567036.2021.1877372

Y.S.M. Altarazi, A.R. Abu Talib, J. Yu, E. Gires, M.F. Abdul Ghafir, J. Lucas, T. Yusaf, Energy 238 (2022) 121910. https://doi.org/10.1016/j.energy.2021.121910

R. Jayabal, S. Subramani, D. Dillikannan, Y. Devarajan, L. Thangavelu, M. Nedunchezhiyan, G. Kaliyaperumal, M.V. De Poures, Energy 250 (2022) 123709. https://doi.org/10.1016/j.energy.2022.123709

M. Miya, K. Venkateswarlu, Int. J. Ambient Energy 43 (2022) 4870–4877. 10.1080/01430750.2021.1923570

A. Cakmak, M. Kapusuz, O. Ganiyev, H. Ozcan, Environ. Clim. Technol. 22 (2018) 55–68. https://intapi.sciendo.com/pdf/10.2478/rtuect-2018-0004

V. Praveena, U. Akshaykumar, T. Nishad, J. Phys. Conf. Ser. 2054 (2021) 012050. https://iopscience.iop.org/article/10.1088/1742-6596/2054/1/012050

M.V. De Poures, A.P. Sathiyagnanam, D. Rana, B. Rajesh Kumar, S. Saravanan, Appl. Therm. Eng. 113 (2017) 1505–1513. https://doi.org/10.1016/j.applthermaleng.2016.11.164

R. Shanmugam, D. Dillikannan, G. Kaliyaperumal, M.V. De Poures, R.K. Babu, Energy Sources, Part A 43 (2021) 3064–3081. https://doi.org/10.1080/15567036.2020.1833112

D. Dillikannan, D. J., M.V. De Poures, G. Kaliyaperumal, A.P. Sathiyagnanam, R.K. Babu, N. Mukilarasan, Energy Sources, Part A 42 (2020) 1375–1390. https://doi.org/10.1080/15567036.2019.1604853

B. Rajesh Kumar, S. Saravanan, Fuel 170 (2016) 49–59. https://doi.org/10.1016/j.fuel.2015.12.029

J.C. Ge, G. Wu, B.-O. Yoo, N.J. Choi, Energy 253 (2022) 124150. https://doi.org/10.1016/j.energy.2022.124150

X. Duan, Z. Xu, X. Sun, B. Deng, J. Liu, Energy 231 (2021) 121069. https://doi.org/10.1016/j.energy.2021.121069

D. Kulandaivel, I.G. Rahamathullah, A.P. Sathiyagnanam, K. Gopal, D. Damodharan, D.P. Melvin Victor, Fuel 278 (2020) 118304. https://doi.org/10.1016/j.fuel.2020.118304

Y. Yu, Y. Wang, J. Li, M. Fu, A.N. Shah, C. He, IEEE Access 9 (2021) 11002–11013. https://doi.org/10.1109/ACCESS.2021.3050165

R. Yang, T. Xie, Z. Liu, Energies 15 (2022) 3242. https://doi.org/10.3390/en15093242

Ü. Ağbulut, M. Ayyıldız, S. Sarıdemir, Energy 197 (2020) 117257. https://doi.org/10.1016/j.energy.2020.117257

I. Portugal, P. Alencar, D. Cowan, Expert Syst. Appl. 97 (2018) 205–227. https://doi.org/10.1016/j.eswa.2017.12.020

M. Aliramezani, C.R. Koch, M. Shahbakhti, Prog. Energy Combust. Sci. 88 (2022) 100967. https://doi.org/10.1016/j.pecs.2021.100967

W.R. Liao, J.H. Shi, G.X. Li, J. Appl. Fluid Mech. 16 (2023) 2041-2053. https://doi.org/10.47176/jafm.16.10.1801

M. Vijayaragavan, B. Subramanian, S. Sudhakar, L. Natrayan, Int. J. Hydrogen Energy 47 (2022) 37635–37647. https://doi.org/10.1016/j.ijhydene.2021.11.201

B. Ashok, K. Nanthagopal, M. Senthil Kumar, A. Ramasamy, D. Patel, S. Balasubramanian, S. Balakrishnan, Int. J. Green Energy 16 (2019) 834–846. https://doi.org/10.1080/15435075.2019.1641107

H. Xiao, X. Yang, R. Wang, S. Li, J. Ruan, H. J, Therm. Sci. 24 (2020) 215–229. https://doi.org/10.2298/TSCI190112304X

M. Chandran, R. Chinnappan, C. Kit Ang, Energy Sources, Part A (2020) 1–13. https://doi.org/10.1080/15567036.2020.1764671

G.R. Kothiwale, K.M. Akkoli, B.M. Doddamani, S.S. Kattimani, Ü. Ağbulut, A. Afzal, A.R. Kaladgi, Z. Said, Int. J. Environ. Sci. Technol. 20 (2023) 5013–5034. https://doi.org/10.1007/s13762-022-04397-0

K. Subramanian, S.A. Paramasivam, D. Dillikannan, M. Muthu, P.R. Yadav Sanjeevi, Int. J. Ambient Energy (2022) 1–14. https://doi.org/10.1080/01430750.2022.2103184

B. Rajesh Kumar, S. Saravanan, D. Rana, A. Nagendran, Energy Convers. Manage. 123 (2016) 470–486. https://doi.org/10.1016/j.enconman.2016.06.064

B. Ashok, K. Nanthagopal, R.T.K. Raj, J. P. Bhasker, D. Sakthi Vignesh, Fuel Process. Technol. 167 (2017) 18–30. https://doi.org/10.1016/j.fuproc.2017.06.024

B.R. Kumar, S. Saravanan, Fuel 180 (2016) 396–406. https://doi.org/10.1016/j.fuel.2016.04.060

K. Duraisamy, R. Ismailgani, S.A. Paramasivam, G. Kaliyaperumal, D. Dillikannan, Energy Environ. 32 (2021) 481–505. https://doi.org/10.1177/0958305X20942873

A. Ramesh, B. Ashok, K. Nanthagopal, M. Ramesh Pathy, A. Tambare, P. Mali, P. Phuke, S. Patil, R. Subbarao, Fuel 249 (2019) 472–485. https://doi.org/10.1016/j.fuel.2019.03.072

A.E. Gürel, Ü. Ağbulut, Y. Biçen, J. Cleaner Prod. 277 (2020) 122353. https://doi.org/10.1016/j.jclepro.2020.122353

M.V. De Poures, D. Dillikannan, G. Kaliyaperumal, S. Thanikodi, Ü. Ağbulut, A.T.

Hoang, Z .Mahmoud, S. Shaik, C .A.Saleel, A.Afzal Process Saf. Environ. Prot.

(2023), 738-752, https://doi.org/10.1016/j.psep.2023.02.054

D. Kulandaivel, I.G. Rahamathullah, A.P, Sathiyagnanam , K. Gopal , D. Damodharan ,

De Poures Melvin Victor, Fuel, 278, (2020), https://doi.org/10.1016/j.fuel.2020.118304

Published

04.07.2024

Issue

Section

Articles

How to Cite

Machine learning predictions on the output parameters of CRDI engines fueled with ternary blend: Original scientific paper. (2024). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ240303025S

Similar Articles

11-20 of 22

You may also start an advanced similarity search for this article.