Influence of texture and nanomaterials on the produced natural fiber characteristics Original scientific paper

Main Article Content

Mahboubeh Asal
https://orcid.org/0009-0004-7239-6574
Abolfazl Davodiroknabadi
https://orcid.org/0000-0001-8279-2803
Mohammad Mirjalili
https://orcid.org/0009-0002-7954-0941
Ali Nazari
https://orcid.org/0000-0002-4508-6480

Abstract

Abstract


This research investigated the type of texture and nano-materials and evaluated the effect of these two parameters on the final properties of the fabric. The 100% warp-weft cotton fabric and electrospun cellulosic nano fabric, which are treated with strontium titanate and zinc titanate, are produced using a specific method. Scanning electron microscopy and elemental mapping proved the existence of nanoparticles and helped to analyse the morphology of produced samples. The result of bactericidal property and its durability during washing cycles against Escherichia coli and Bacillus cereus (two common negativegram-negative/positive bacteria) was excellent. The strength and abrasion resistance of the treated specimens is higher than the untreated specimens due to presence of nanoparticles and their special structural characteristics and the bond formation of these nanoparticles with fiber. On the other hand, the anti-inflammatory property of samples enhanced in comparison with raw samples due to the reduction of the production of inflammatory cytokines by nanomaterials.

Article Details

How to Cite
Asal, M. ., Davodiroknabadi, A. ., Mirjalili, M. ., & Nazari, A. . (2024). Influence of texture and nanomaterials on the produced natural fiber characteristics: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ240201026A
Section
Articles

References

L. Karimi, S. Zohoori, J. Nanostruct. Chem. 3 (2013) 32. https://doi.org/10.1186/2193-8865-3-32

H. Khouni, N. Bouzit, Polym. Polym. Compos. 28 (2019) 451-461. https://doi.org/10.1177/0967391119887573

T.G. Arul, V. Perumal, R. Thanigaivelan, Chem. Ind. Chem. Eng. Q. 28 (2022) 247-253. https://doi.org/10.2298/ciceq210501036a

J.I. Humadi, M.A. Shihab, G.S. Ahmed, M.A. Ahmed, Z.A. Abdullah, S. Sehgal, Chem. Ind. Chem. Eng. Q. 30 (2023) 151-159. https://doi.org/10.2298/ciceq230208020h

Q. Li, J. Zhou, L. Fu, C. Chen, S. Mao, Z. Pu, J. Yang, J.-W. Shi, K. Wu, J. Alloys Compd. 925 (2022) 166747. https://doi.org/10.1016/j.jallcom.2022.166747

S. Singh, S. Perween, A. Ranjan, J. Phys. Chem. Solids 158 (2021) 110221. https://doi.org/10.1016/j.jpcs.2021.110221

A. Kumar, M. Sharma, A. Amari, R. Vaish, Environ. Res. 240 (2024) 117541. https://doi.org/10.1016/j.envres.2023.117541

Z. Cai, J. Li, Y. Wang, J. Alloys Compd. 489 (2010) 167-169. https://doi.org/10.1016/j.jallcom.2009.09.044

R. Mohammadisaghand, S. Zohoori, A. Shahbeigihassanabadi, F. Mohammadisaghand, F. Mousavi, V. Shorabi, J. Nat. Fibers 20 (2023) 2152150. https://doi.org/10.1080/15440478.2022.2152150

S. Zohoori, L. Karimi, A. Nazari, Fibres Text. East. Eur. 22 (2014) 91-95. https://www.researchgate.net/publication/263235187_Photocatalytic_Self-cleaning_Synergism_Optimization_of_Cotton_Fabric_using_Nano_SrTiO3_and_Nano_TiO2

S. Zohoori, L. Karimi, Fibers Polym. 14 (2013) 996-1000. https://doi.org/10.1007/s12221-013-0996-4

T. Zhang, E. Du, Y. Liu, J. Cheng, Z. Zhang, Y. Xu, S. Qi, Y. Chen, Int. J. Nanomed. 15 (2020) 1457-1468. https://doi.org/10.2147/ijn.s228839

U. Gunputh, H.R. Le, A. Besinis, C. Tredwin, R. Handy, Int. J. Nanomed. 14 (2019) 3583-3600. https://doi.org/10.2147/ijn.s199219

G. Baysal, Int. J. Biol. Macromol. 254 (2024) 127678. https://doi.org/10.1016/j.ijbiomac.2023.127678

T. Bayisa, G.D. Edossa, N.K. Gupta, L.G. Inki, Sci. Afr. 22 (2023) 01977. https://doi.org/10.1016/j.sciaf.2023.e01977

F. Yamin, F. Naddafiun, S. Zohoori, J. Nat. Fibers. 19 (2022) 6770-6779. https://doi.org/10.1080/15440478.2021.1932675

M. Monavari, S. Zohoori, A. Davodiroknabadi, Micro Nano Lett. 17 (2022) 210-215. https://doi.org/10.1049/mna2.12125

S. Zohoori, S. Shahsavari, M. Sabzali, S.A. Hosseini, R. Talebikatieklahijany, Z. Morshedzadeh, J. Nat. Fibers. 19 (2022) 8937-8945. https://doi.org/10.1080/15440478.2021.1975600

N. Kooshamoghadam, S. Zohoori, M. Bekrani, S. Shahsavari, R. Talebikatieklahijany, J. Nat. Fibers. 19 (2022) 4846-4853 https://doi.org/10.1080/15440478.2020.1870631

M.S. Al-Khatib, H. Khyami-Horani, E. Badran, A.A. Shehabi, Diagn. Microbiol. Infect. Dis. 59 (2007) 383-387. https://doi.org/10.1016/j.diagmicrobio.2007.06.014

M.J. Ormsby, S.A. Johnson, N. Carpena, L.M. Meikle, R.J. Goldstone, A. McIntosh, H.M. Wessel, H.E. Hulme, C.C. McConnachie, J.P.R. Connolly, A.J. Roe, C. Hasson, J. Boyd, E. Fitzgerald, K. Gerasimidis, D. Morrison, G.L. Hold, R. Hansen, D. Walker, D.G.E. Smith, D.M. Wall, Cell Rep. 30 (2020) 2297-2305.

K.M. Rao, M. Suneetha, G.T. Park, A.G. Babu, S.S. Han, Int. J. Biol. Macromol. 155 (2020) 71-80. https://doi.org/10.1016/j.ijbiomac.2020.03.170

M. Wang, M. Zhang, M. Zhang, M. Aizezi, Y. Zhang, J. Hu, G. Wu, Carbohydr. Polym. 217 (2019) 15-25. https://doi.org/10.1016/j.carbpol.2019.04.042

C.A. Winter, E.A. Risley, G.W. Nuss, Exp. Biol. Med. 111 (1962) 544-547. https://doi.org/10.3181/00379727-111-27849