Optimization of the vinyl-monochloride recovery process for the reduction of costs and environmental impact
Original scientific paper
DOI:
https://doi.org/10.2298/CICEQ230825024AKeywords:
Vinyl monochloride, simulation, heat exchangers in series, optimal operating conditionsAbstract
Reducing environmental impacts in the production processes is the focus of large industries. In the PVC production process, the loss of vinyl monochloride (VCM) through an incineration stream of inert materials is a point of attention due to emission of greenhouse gases. VCM is lost as part of the stream of uncondensed gases from the VCM recovery unit. The optimization of the VCM recovery process was carried out by modelling the industrial system and running it using a process simulator. The unit model and simulation results have been verified through plant operating data. Sensitivity analyses were performed to identify which independent variables improved the VCM condensation rate. Based on plant operating experience, three independent variables were selected and their influence on the VCM recovery flow rate was verified: pressure, composition of the input stream and utility water flow rate. After the sensitivity analysis, the plant operating pressure was selected for optimization, resulting in the additional quarterly recovery of 7.5 tons of VCM and a reduction of more than 5 tons of natural gas fuel, that is, an annual reduction of 23 tons of fuel, which represents 53 tons of CO2eq. Overall, the annual savings amount to US$15,000, US$1,060 by reducing the consumption of fuel gas alone. Therefore, by ensuring greater VCM recovery, competitiveness improves by reducing production costs, and greenhouse gas emissions are reduced due to the decrease in gas incineration.
References
W.A. Michael, V. Giovanni, Vinyl Chloride Polymers. Encyclopedia of Polymer Science and Technology. John Wiley & Sons. Ed. 8, Herman F. Mark, New York (2002) 437-475. ISBN: 9780471440260.
M.R. Azari, R. Tayefeh-Rahimian, M.J. Jafari, H. Souri, Y. Shokoohi, A. Tavakol, Z. Yazdanbakhsh, Toxicol. Ind. Health 32 (12) (2016) 1921-1926. http://doi.org/10.1177/0748233715596663.
R.N. Wheeler Jr, Environ. Health Perspect. 41 (1981) 123-128. https://doi.org/10.1289/ehp.8141123
IARC Monographs on the Evaluation of Carcinogens Risks to Humans, 7th ed., World Health Organization, Lyon (1974) 291–305. ISBN 978-92-832-1207-2.
S. Alberto, M. Davide Di, C. Marisa, M. Stefania, M. Alessandro, I. Sergio, Arch. Environ. Occup. Health 77 (5) (2022) 372-381. https://doi.org/10.1080/19338244.2021.1900045
U. Fedeli; P. Girardi, G. Gardiman, D. Zara, L. Scoizzato, MN. Ballarin, M. Baccini, R. Pirastu, P. Comba,G. Mastrangelo, Am. J. Ind. Med.. 62 (1) (2019) 14-20. https://doi.org/10.1002/ajim.22922
G.C.Bertram. Environ. Sci. Technol. 11 (9) (1977) 864-868. https://doi.org/10.1021/es60132a014
World Health Organization, European commission, ICSC 0082, vinyl monochloride CAS: 75-01-4. icsc 0082 - cloruro de vinilo
L. C. GOMES, Master Thesis, University of Paraná and University of Bragança, Portugal (2021).
F.S. Rodrigo, G.M.N. Luis, Rev. Cienc. Exatas Apl. Tecnol. 5 (1) (2013) 12-26. https://doi.org/10.5335/ciatec.v5i1.3119
R. Monica, Doctoral Dissertation, California State University, Long Beach, USA (2022).
Central Pollution Control Board, Minimizing Release and Environmental Implications of Chlorine and its Compounds, Ministry of Environment & Forests, Delhi (2008) 21-24. CONTENT (cpcb.nic.in)
C. Paulo, R.M. Ana, R.E. Alírio, F. Alexandre, Aiche J. 66 (5) (2020).
K.E. John, (Geon Co), EP0027805B1 (1980).
J. L. Richard, H. W. Mark, W. G. Johannes, K. Juergen, Aiche J. 32 (10) (1993) 2236-2241. https://doi.org/10.1021/ie00022a006
P.J. Piyush, T.G. Clay, H.J. Edward, S.S. Carl, US3984218A (1976).
A. Fedak, Master Thesis, University of Aveiro, Portugal (2011).
N. A. Jacqueline. Master Thesis, University of Bahia, Brazil (2023).
H. Juma, Chemical Process Design and Simulation: Aspen Plus and Aspen Hysys Applications, Wiley-AIChE (2019). ISBN: 978-1-119-08911-7.
F.P. Renato, Master Thesis, University of Campina Grande, Brazil (2009).
C.D. Neves, J.M.D. Oliveira, Resultados da simulação estática da torre de destilação de VCM e antipolimerizante. Braskem´s report intern. (2017).
G.L. Silva, R.A.F. Lima, Master Thesis, University of Pernambuco, Brazil (2007).
M.R. Souza, Master Thesis, University of Bahia, Brazil (2016).
R. Vargas. Gestão Industrial de A a Z, , 1th ed., CreateSpace Independent Publishing Platform, Brazil (2015). ISBN: 1505837308.
P.F. Incropera, D. P. DeWitt, T.L. Bergman, A.S. Lavine, Fundamentals of heat and mass transfer, 6th ed., John Wiley & Sons, New York (2006). ISBN: 978-0471457282.
Air Emissions Factors and Quantification.. Protocol Boiler/Furnace: EPA AP-42, Ed. 5. Chapter 1, Sections 1.1, 1.3, 1.4 and 1.5., EPA- United States Environmental Protection Agency (https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-fifth-edition-volume-i-chapter-1-external-0). [Accessed in 02 January 2022].
Unacademy. Understanding Maximum and Minimum Value of Quadratic Equation (unacademy.com) [Accessed in 02 July 2023].
J.M. Smith, H.C. Van Ness, M.M. Abbott, Introdução à Termodinâmica da Engenharia Química, LTC Ed. 8, São Paulo (2020). ISBN: 9788521636847.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Jacqueline Arnautovic Nascimento, Paulo Roberto Britto Guimarães, Regina Ferreira Vianna
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.