Chemical process effects on sloped surface with changing mass and consistent temperature

Original scientific paper

Authors

  • Nagarajan Gnanavel Department of Mathematics, Panimalar Engineering College, Poonamallee, Chennai 600123, Tamil Nadu, India https://orcid.org/0000-0001-8431-2746
  • Sundar Raj Mariadoss Department of Mathematics, Panimalar Engineering College, Poonamallee, Chennai 600123, Tamil Nadu, India https://orcid.org/0000-0002-5735-2424
  • Venkatesan Jayavelu Department of Mathematics, Rajalakshmi Engineering College, Thandalam, Chennai 602105 , India https://orcid.org/0000-0001-5275-1568
  • Venkata Mohan Reddy Polaka Department of Science and Humanities, R.M.D. Engineering College, Kavaraipettai 601206, India https://orcid.org/0000-0002-8871-546X
  • Muthucumaraswamy Rajamanickam Department of Applied Mathematics, Sri Venkateswara College of Engineering, Sriperumbudur 602117, Tamil Nadu, India https://orcid.org/0000-0003-0955-8492

DOI:

https://doi.org/10.2298/CICEQ231212023G

Keywords:

tilted surface, thermal transfer, mass transmission, chemical reaction, Laplace transform method

Abstract

The research extensively investigated the turbulent flow patterns surrounding an unbounded inclined plate under the conditions of uniform temperature and variable mass dispersion. Throughout this analysis, the study thoroughly considered the impact of chemical reactions within the system. Focusing on the harmonic inclination of the plate within its plane, the study employed the LT approach to accurately solve the non-dimensional governing equations. In scrutinizing various profiles, the investigation examined the impact of several crucial physical factors: chemical response variable, Schmidt number, thermal Grashof number, mass Grashof number, and duration. This study delves into the intricate influence of various factors on the complex flow dynamics surrounding inclined plates, specifically focusing on heat and mass transfer phenomena. By examining these relationships, the research provides crucial insights into improving the efficiency of thermal and mass transmission processes within systems that incorporate tilted surfaces. Moreover, this knowledge can potentially contribute to advancements in various fields, from renewable energy systems to manufacturing processes, where heat and mass transfer play pivotal roles.

References

O.A. Bég, T.A. Bég, A.Y. Bakier, V.R. Prasad, Int. J. Appl. Math. Mech. 5(2) (2009) 39–57. https://www.scirp.org/reference/referencespapers?referenceid=207616

O. Aydm, A. Kaya, Heat Mass Transfer 46 (2009) 129–136. https://sci-hub.wf/10.1007/s00231-009-0551-4

R. Muthucumaraswamy, G. Nagarajan, V.S.A. Subramanian, Ann. Fac. Eng. Hunedoara 8 (2010) 220-225.https://annals.fih.upt.ro/pdf-full/2010/ANNALS-2010-3-45.pdf

R. Muthucumaraswamy, Chem. Ind. Chem. Eng. Q. 16 (2010) 167−173. https://doi.org/10.2298/CICEQ091231024M

V. Bisht, M. Kumar, Z. Uddin, J. Appl. Fluid Mech. 4 (2011) 59–63. https://doi.org/10.36884/jafm.4.04.11947

M. Sundar Raj, R. Muthucumaraswamy. V.S.A. Subramanian, Int. J. Appl. Mech. Eng. 16(3) (2011) 885-891. https://www.infona.pl/resource/bwmeta1.element.baztech-article-BPZ5-0017-0038

O.D. Makinde, ZNA 67a (2012) 239–247. https://doi.org/10.5560/zna.2012-0014

P. Rana, R. Bhargava, O.A. Bég, Comput. Math. Appl. 64 (2012) 2816–2832. https://doi.org/10.1016/j.camwa.2012.04.014

M.S. Alam, M. Ali, M.D. Delowar Hossain, Int. J. Eng. Sci. 2(7) (2013) 81–88. https://www.theijes.com/papers/v2-i7/Part.6/K0276081088.pdf

R. Muthucumaraswamy, L. Jeyanthi, ARPN J. Eng. Appl. Sci. 10(20) (2015) 9596-9603 http://www.arpnjournals.org/jeas/research_papers/rp_2015/jeas_1115_2914.pdf

M. Narahari, S. Tippa, R. Pendyala, M.Y. Nayan, Recent Adv. Appl. Theor. Mech., Proc. WSEAS Int. Conf. (MECHANICS '15), 11th, 126–137 (2015).http://www.wseas.us/e-library/conferences/2015/Malaysia/APTHME/APTHME-15.pdf

H. Mondal, D. Pal, S. Chatterjee, P. Sibanda, Ain Shams Eng. J. 8 (2016) 2111–2121. https://doi.org/10.1016/j.asej.2016.10.015

Farjana Akter, Md. Manjiul Islam, Ariful Islam, Md. Shakhaoath Khan, Md. Saddam Hossain, Open Journal of Fluid Dynamics. 6 (2016) 62-74. http://dx.doi.org/10.4236/ojfd.2016.61006

Jyotsna Rani Pattnaik, Gouranga Charan Dash, Suprava Singh, Ain Shams Engineering Journal. 8(1) (2017) 67-75 http://dx.doi.org/10.1016/j.asej.2015.08.014

S. Khalid, M.A. Kamal, U. Rasheed, S. Farooq, S. Kussain, H. Waqas, J. Appl. Environ. Biol. Sci. 7(5) (2017) 154–165. https://www.textroad.com/pdf/JAEBS/J.%20Appl.%20Environ.%20Biol.%20Sci.,%207(5)154-165,%202017.pdf

S.V. Sailaja, B. Shanker, R. Srinivasa Raju, J. Nanofluids 6(3) (2017) 420-435. https://doi.org/10.1166/jon.2017.1337

R.K. Dhal, B. Jena, P.M. Sreekumar, Int. Res. J. Adv. Eng. Sci. 2(2) (2017) 299-303. http://irjaes.com/wp-content/uploads/2020/10/IRJAES-V2N2P239Y17.pdf

U.S. Rajput, Gaurav Kumar, Jordanian J. Mech. Ind. Eng. 11(1) (2017) 41-49. https://jjmie.hu.edu.jo/vol%2011-1/JJMIE-13-16-01.pdf

S. Agarwalla, N. Ahmed, Heat Transfer-Asian Res. (2017) 1-15. https://sci-hub.wf/10.1002/htj.21288

H. Mondal, D. Pal, S. Chatterje, P. Sibanda, Ain Shams Eng. J. 9(4) (2018) 2111-2121. https://doi.org/10.1016/j.asej.2016.10.015

M. Ahmad, M.A. Imran, M. Aleem, I. Khan, J. Therm. Anal. Calorim. 137 (2019) 1783 – 1796. https://doi.org/10.1007/s10973-019-08065-3

A. Sandhya, G.V. RamanaReddy, G.V.S.R. Deekshitulu, Int. J. Appl. Mech. Eng. 25 (3) (2020) 86-102. https://doi.org/10.2478/ijame-2020-0036

T.L. Oyekunle, S.A. Agunbiade, Oyekunle, A. Gunbiade, J. Egypt. Math. Soc. 28(51) (2020) 1-19. https://doi.org/10.1186/s42787-020-00110-7

S. ThamizhSuganya, P. Balaganesan, L. Rajendran, M. Abukhaled, Eur. J. Pure Appl. Math. 13(3) (2020). https://doi.org/10.29020/nybg.ejpam.v13i3.3730

A.S. Idowu, B.O. Falodun, Arab. J. Basic Appl. Sci. 27(1) (2020) 149–165. https://doi.org/10.1080/25765299.2020.1746017

M.B. Riaz, A. Atangana, S.T. Saeed, in Fractional Order Analysis: Theory, Methods and Applications, H. Dutta, A.O. Akdemir, A. Atangana, Eds., John Wiley & Sons Inc., (2020) 253–282. https://sci-hub.se/https://doi.org/10.1002/9781119654223.ch10

P.K. Dadheech, P. Agrawal, A. Sharma, A. Dadheech, Q. Al-Mdallal, S.D. Purohit, Case Stud. Therm. Eng. 28 (2021) 101491. https://doi.org/10.1016/j.csite.2021.101491

A.A. Zafar, J. Awrejcewicz, G. Kudra, N.A. Shah, S.-J. Yook, Case Stud. Therm. Eng. 27 (2021) https://doi.org/10.1016/j.csite.2021.101249

D.P.C. Rao, S. Thiagarajan, V. Srinivasakumar, Heat Transfer 50 (7) (2021) 7120-7138. https://onlinelibrary.wiley.com/doi/10.1002/htj.22220

K. Raghunath, N. Gulle, R.R. Vaddemani, O. Mopuri, Heat Transfer 51(3) (2021) 2742-2760 https://onlinelibrary.wiley.com/doi/10.1002/htj.22423

R. Vijayaragavana, V. Bharathib, J. Prakash, Indian J. Pure Appl. Phys. 59 (2021) 28-39. https://pdfs.semanticscholar.org/7d14/5f4f87013207ba593f8d93ed60d2030d028d.pdf

C. PavanKumar, K. Raghunath, M. Obulesu, Turk. J. Comp. Math. Edu. 12(13) (2021) 960-977.https://turcomat.org/index.php/turkbilmat/article/view/8584/6710

R. SureshBabu, T. SaravanKumar, M.V. Govindaraju, B. Mallikarjuna, Biointerface Res. Appl. Chem. 11(5) (2021) 13252-13267. https://doi.org/10.33263/BRIAC115.1325213267

Raghunath Kodi, Obulesu Mopuri, Heat Transfer 51 (2021) 733-752 https://doi.org/10.1002/htj.22327

S.G. Bejawada, W. Jamshed, R. Safdar, Y.D. Reddy, M.M. Alanazi, H.Y. Zahran, M.R. Eid, Coatings 12(2) (2022) 151. https://doi.org/10.3390/coatings12020151

H.I. Osman, N.F.M. Omar, D. Vieru, Z. Ismail, J. Adv. Res. Fluid. Mech. Therm. Sci. 92(1) (2022) 18-27. https://doi.org/10.37934/arfmts.92.1.1827

B.K. Tad, N. Ahmed, Biointerface. Res. Appl. Chem. 12(5) (2022) 6280-6296. https://biointerfaceresearch.com/wp-content/uploads/2021/11/20695837125.62806296.pdf

G. Nagarajan, M. SundarRaj, R. Muthucumaraswamy, Int. J. Appl. Mech. Eng. 27(4) (2022) 105-116. https://doi.org/10.2478/ijame-2022-0053

B.C. Nhial, V.S. HariBabu, V.N. Vellanki, G.Y. Sagar, JPSP 6(5) (2022) 697–706. https://journalppw.com/index.php/jpsp/article/view/5861/3858

K. Raghunath, N. Gulle, R. R. Vaddemani, O. Mopuri, Heat Transfer 51(3) (2022) 2742-2760. https://doi.org/10.1002/htj.22423

R. MohanaRamana, K. VenkateswaraRaju, K. Raghunath, Heat Transfer 51(7) (2022) 6431-6449. https://doi.org/10.1002/htj.22598

N. Shehzad, A. Zeeshan, M. Shakeel, R. Ellahi, S. M. Sait, Coatings 12(430) (2022) 1-25. https://doi.org/10.3390/coatings12040430

A. Raza, U. Khan, Z. Raizah, S.M. Eldin, A.M. Alotaibi, S. Elattar, A.M. Abed, Symmetry 14 (2022) 2412. https://www.mdpi.com/2073-8994/14/11/2412

P. Sivakumar, R. Muthucumaraswamy, Gis Sci. J. 9(1) (2022) 167-177. 1869-9391. https://drive.google.com/file/d/1DKDzhYzeHz1QWap1sh_dTcDFXAfyvDl-/view

K. Raghunath, O. Mopuri, Heat Transfer, 51 (2022), 733-752. https://doi.org/10.1002/htj.22327

M. SundarRaj, G. Nagarajan, V.P. Murugan, R. Muthucumaraswamy, Int. J. Appl. Mech. Eng. 28(2) (2023) 64-76. https://www.ijame-poland.com/pdf-168439-91810?filename=Impacts%20of%20chemical.pdf

N.S. Wahid, N.M. Arifin, N.S. Khashi, I. Pop, Alexandria Eng. J. 66 (2023) 769–783. https://doi.org/10.1016/j.aej.2022.10.075

J.S. Huang, Journal of Mechanics, 39(2023) 88-104 https://doi.org/10.1093/jom/ufad006

B. Prabhakar Reddy, M.H. Simba, Alfred Hugo, Hindawi International Journal of Chemical Engineering. Article ID 9342174 (2023) https://doi.org/10.1155/2023/9342174

K.V. Raju, R. Mohanaramana, S. Sudhakar Reddy, K. Raghunath, Communications in Mathematics and Applications. 14(1) (2023) 237-255 https://doi.org/10.26713/cma.v14i1.1867

R. Rajaraman, R. Muthucumaraswamy, Chem. Ind. Chem. Eng. Q. 30 (3) 223-230 (2024) https://doi.org/10.2298/CICEQ230526025R

Downloads

Published

20.06.2024

Issue

Section

Articles

How to Cite

Chemical process effects on sloped surface with changing mass and consistent temperature: Original scientific paper. (2024). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ231212023G

Similar Articles

101-110 of 138

You may also start an advanced similarity search for this article.