10.2298/CICEQ240106022A Original scientific paper

Main Article Content

Nagarajan Gnanavel
https://orcid.org/0000-0001-8431-2746
Sundar Raj Mariadoss
https://orcid.org/0000-0002-5735-2424
Venkatesan Jayavelu
https://orcid.org/0000-0001-5275-1568
Venkata Mohan Reddy Polaka
https://orcid.org/0000-0002-8871-546X
Muthucumaraswamy Rajamanickam
https://orcid.org/0000-0003-0955-8492

Abstract

The research extensively investigated the turbulent flow patterns surrounding an unbounded inclined plate under the conditions of uniform temperature and variable mass dispersion. Throughout this analysis, the study thoroughly considered the impact of chemical reactions within the system. Focusing on the harmonic inclination of the plate within its plane, the study employed the LT approach to accurately solve the non-dimensional governing equations. In scrutinizing various profiles, the investigation examined the impact of several crucial physical factors: chemical response variable, Schmidt number, thermal Grashof number, mass Grashof number, and duration. This study delves into the intricate influence of various factors on the complex flow dynamics surrounding inclined plates, specifically focusing on heat and mass transfer phenomena. By examining these relationships, the research provides crucial insights into improving the efficiency of thermal and mass transmission processes within systems that incorporate tilted surfaces. Moreover, this knowledge can potentially contribute to advancements in various fields, from renewable energy systems to manufacturing processes, where heat and mass transfer play pivotal roles.

Article Details

How to Cite
Gnanavel, N. ., Mariadoss, S. R., Jayavelu, V. ., Reddy Polaka, V. M. ., & Rajamanickam, M. . (2024). 10.2298/CICEQ240106022A: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ231212023G
Section
Articles

References

O.A. Bég, T.A. Bég, A.Y. Bakier, V.R. Prasad, Int. J. Appl. Math. Mech. 5(2) (2009) 39–57. https://www.scirp.org/reference/referencespapers?referenceid=207616

O. Aydm, A. Kaya, Heat Mass Transfer 46 (2009) 129–136. https://sci-hub.wf/10.1007/s00231-009-0551-4

R. Muthucumaraswamy, G. Nagarajan, V.S.A. Subramanian, Ann. Fac. Eng. Hunedoara 8 (2010) 220-225.https://annals.fih.upt.ro/pdf-full/2010/ANNALS-2010-3-45.pdf

R. Muthucumaraswamy, Chem. Ind. Chem. Eng. Q. 16 (2010) 167−173. https://doi.org/10.2298/CICEQ091231024M

V. Bisht, M. Kumar, Z. Uddin, J. Appl. Fluid Mech. 4 (2011) 59–63. https://doi.org/10.36884/jafm.4.04.11947

M. Sundar Raj, R. Muthucumaraswamy. V.S.A. Subramanian, Int. J. Appl. Mech. Eng. 16(3) (2011) 885-891. https://www.infona.pl/resource/bwmeta1.element.baztech-article-BPZ5-0017-0038

O.D. Makinde, ZNA 67a (2012) 239–247. https://doi.org/10.5560/zna.2012-0014

P. Rana, R. Bhargava, O.A. Bég, Comput. Math. Appl. 64 (2012) 2816–2832. https://doi.org/10.1016/j.camwa.2012.04.014

M.S. Alam, M. Ali, M.D. Delowar Hossain, Int. J. Eng. Sci. 2(7) (2013) 81–88. https://www.theijes.com/papers/v2-i7/Part.6/K0276081088.pdf

R. Muthucumaraswamy, L. Jeyanthi, ARPN J. Eng. Appl. Sci. 10(20) (2015) 9596-9603 http://www.arpnjournals.org/jeas/research_papers/rp_2015/jeas_1115_2914.pdf

M. Narahari, S. Tippa, R. Pendyala, M.Y. Nayan, Recent Adv. Appl. Theor. Mech., Proc. WSEAS Int. Conf. (MECHANICS '15), 11th, 126–137 (2015).http://www.wseas.us/e-library/conferences/2015/Malaysia/APTHME/APTHME-15.pdf

H. Mondal, D. Pal, S. Chatterjee, P. Sibanda, Ain Shams Eng. J. 8 (2016) 2111–2121. https://doi.org/10.1016/j.asej.2016.10.015

Farjana Akter, Md. Manjiul Islam, Ariful Islam, Md. Shakhaoath Khan, Md. Saddam Hossain, Open Journal of Fluid Dynamics. 6 (2016) 62-74. http://dx.doi.org/10.4236/ojfd.2016.61006

Jyotsna Rani Pattnaik, Gouranga Charan Dash, Suprava Singh, Ain Shams Engineering Journal. 8(1) (2017) 67-75 http://dx.doi.org/10.1016/j.asej.2015.08.014

S. Khalid, M.A. Kamal, U. Rasheed, S. Farooq, S. Kussain, H. Waqas, J. Appl. Environ. Biol. Sci. 7(5) (2017) 154–165. https://www.textroad.com/pdf/JAEBS/J.%20Appl.%20Environ.%20Biol.%20Sci.,%207(5)154-165,%202017.pdf

S.V. Sailaja, B. Shanker, R. Srinivasa Raju, J. Nanofluids 6(3) (2017) 420-435. https://doi.org/10.1166/jon.2017.1337

R.K. Dhal, B. Jena, P.M. Sreekumar, Int. Res. J. Adv. Eng. Sci. 2(2) (2017) 299-303. http://irjaes.com/wp-content/uploads/2020/10/IRJAES-V2N2P239Y17.pdf

U.S. Rajput, Gaurav Kumar, Jordanian J. Mech. Ind. Eng. 11(1) (2017) 41-49. https://jjmie.hu.edu.jo/vol%2011-1/JJMIE-13-16-01.pdf

S. Agarwalla, N. Ahmed, Heat Transfer-Asian Res. (2017) 1-15. https://sci-hub.wf/10.1002/htj.21288

H. Mondal, D. Pal, S. Chatterje, P. Sibanda, Ain Shams Eng. J. 9(4) (2018) 2111-2121. https://doi.org/10.1016/j.asej.2016.10.015

M. Ahmad, M.A. Imran, M. Aleem, I. Khan, J. Therm. Anal. Calorim. 137 (2019) 1783 – 1796. https://doi.org/10.1007/s10973-019-08065-3

A. Sandhya, G.V. RamanaReddy, G.V.S.R. Deekshitulu, Int. J. Appl. Mech. Eng. 25 (3) (2020) 86-102. https://doi.org/10.2478/ijame-2020-0036

T.L. Oyekunle, S.A. Agunbiade, Oyekunle, A. Gunbiade, J. Egypt. Math. Soc. 28(51) (2020) 1-19. https://doi.org/10.1186/s42787-020-00110-7

S. ThamizhSuganya, P. Balaganesan, L. Rajendran, M. Abukhaled, Eur. J. Pure Appl. Math. 13(3) (2020). https://doi.org/10.29020/nybg.ejpam.v13i3.3730

A.S. Idowu, B.O. Falodun, Arab. J. Basic Appl. Sci. 27(1) (2020) 149–165. https://doi.org/10.1080/25765299.2020.1746017

M.B. Riaz, A. Atangana, S.T. Saeed, in Fractional Order Analysis: Theory, Methods and Applications, H. Dutta, A.O. Akdemir, A. Atangana, Eds., John Wiley & Sons Inc., (2020) 253–282. https://sci-hub.se/https://doi.org/10.1002/9781119654223.ch10

P.K. Dadheech, P. Agrawal, A. Sharma, A. Dadheech, Q. Al-Mdallal, S.D. Purohit, Case Stud. Therm. Eng. 28 (2021) 101491. https://doi.org/10.1016/j.csite.2021.101491

A.A. Zafar, J. Awrejcewicz, G. Kudra, N.A. Shah, S.-J. Yook, Case Stud. Therm. Eng. 27 (2021) https://doi.org/10.1016/j.csite.2021.101249

D.P.C. Rao, S. Thiagarajan, V. Srinivasakumar, Heat Transfer 50 (7) (2021) 7120-7138. https://onlinelibrary.wiley.com/doi/10.1002/htj.22220

K. Raghunath, N. Gulle, R.R. Vaddemani, O. Mopuri, Heat Transfer 51(3) (2021) 2742-2760 https://onlinelibrary.wiley.com/doi/10.1002/htj.22423

R. Vijayaragavana, V. Bharathib, J. Prakash, Indian J. Pure Appl. Phys. 59 (2021) 28-39. https://pdfs.semanticscholar.org/7d14/5f4f87013207ba593f8d93ed60d2030d028d.pdf

C. PavanKumar, K. Raghunath, M. Obulesu, Turk. J. Comp. Math. Edu. 12(13) (2021) 960-977.https://turcomat.org/index.php/turkbilmat/article/view/8584/6710

R. SureshBabu, T. SaravanKumar, M.V. Govindaraju, B. Mallikarjuna, Biointerface Res. Appl. Chem. 11(5) (2021) 13252-13267. https://doi.org/10.33263/BRIAC115.1325213267

Raghunath Kodi, Obulesu Mopuri, Heat Transfer 51 (2021) 733-752 https://doi.org/10.1002/htj.22327

S.G. Bejawada, W. Jamshed, R. Safdar, Y.D. Reddy, M.M. Alanazi, H.Y. Zahran, M.R. Eid, Coatings 12(2) (2022) 151. https://doi.org/10.3390/coatings12020151

H.I. Osman, N.F.M. Omar, D. Vieru, Z. Ismail, J. Adv. Res. Fluid. Mech. Therm. Sci. 92(1) (2022) 18-27. https://doi.org/10.37934/arfmts.92.1.1827

B.K. Tad, N. Ahmed, Biointerface. Res. Appl. Chem. 12(5) (2022) 6280-6296. https://biointerfaceresearch.com/wp-content/uploads/2021/11/20695837125.62806296.pdf

G. Nagarajan, M. SundarRaj, R. Muthucumaraswamy, Int. J. Appl. Mech. Eng. 27(4) (2022) 105-116. https://doi.org/10.2478/ijame-2022-0053

B.C. Nhial, V.S. HariBabu, V.N. Vellanki, G.Y. Sagar, JPSP 6(5) (2022) 697–706. https://journalppw.com/index.php/jpsp/article/view/5861/3858

K. Raghunath, N. Gulle, R. R. Vaddemani, O. Mopuri, Heat Transfer 51(3) (2022) 2742-2760. https://doi.org/10.1002/htj.22423

R. MohanaRamana, K. VenkateswaraRaju, K. Raghunath, Heat Transfer 51(7) (2022) 6431-6449. https://doi.org/10.1002/htj.22598

N. Shehzad, A. Zeeshan, M. Shakeel, R. Ellahi, S. M. Sait, Coatings 12(430) (2022) 1-25. https://doi.org/10.3390/coatings12040430

A. Raza, U. Khan, Z. Raizah, S.M. Eldin, A.M. Alotaibi, S. Elattar, A.M. Abed, Symmetry 14 (2022) 2412. https://www.mdpi.com/2073-8994/14/11/2412

P. Sivakumar, R. Muthucumaraswamy, Gis Sci. J. 9(1) (2022) 167-177. 1869-9391. https://drive.google.com/file/d/1DKDzhYzeHz1QWap1sh_dTcDFXAfyvDl-/view

K. Raghunath, O. Mopuri, Heat Transfer, 51 (2022), 733-752. https://doi.org/10.1002/htj.22327

M. SundarRaj, G. Nagarajan, V.P. Murugan, R. Muthucumaraswamy, Int. J. Appl. Mech. Eng. 28(2) (2023) 64-76. https://www.ijame-poland.com/pdf-168439-91810?filename=Impacts%20of%20chemical.pdf

N.S. Wahid, N.M. Arifin, N.S. Khashi, I. Pop, Alexandria Eng. J. 66 (2023) 769–783. https://doi.org/10.1016/j.aej.2022.10.075

J.S. Huang, Journal of Mechanics, 39(2023) 88-104 https://doi.org/10.1093/jom/ufad006

B. Prabhakar Reddy, M.H. Simba, Alfred Hugo, Hindawi International Journal of Chemical Engineering. Article ID 9342174 (2023) https://doi.org/10.1155/2023/9342174

K.V. Raju, R. Mohanaramana, S. Sudhakar Reddy, K. Raghunath, Communications in Mathematics and Applications. 14(1) (2023) 237-255 https://doi.org/10.26713/cma.v14i1.1867

R. Rajaraman, R. Muthucumaraswamy, Chem. Ind. Chem. Eng. Q. 30 (3) 223-230 (2024) https://doi.org/10.2298/CICEQ230526025R