An environmentally friendly indigo dyeing process using iron (II) gluconate as a reducing agent

Original scientific paper

Authors

  • Maha Abdelileh University of Monastir, Faculty of Sciences of Monastir, Research Laboratory of Environmental Chemistry and Clean Processes, 5000Monastir, Tunisia and University of Monastir, National Engineering School of Monastir, Department of Textile, 5000 Monastir, Tunisia https://orcid.org/0000-0001-7260-3458
  • Manel Ben Ticha Department of Early Childhood, University College of Turabah, Taif University, Taif 21944, Saudi Arabia https://orcid.org/0000-0002-9273-6087
  • Nizar Meksi University of Monastir, Faculty of Sciences of Monastir, Research Laboratory of Environmental Chemistry and Clean Processes, 5000Monastir, Tunisia and University of Monastir, National Engineering School of Monastir, Department of Textile, 5000 Monastir, Tunisia https://orcid.org/0000-0001-7794-5246
  • Hatem Dhaouadi University of Monastir, Faculty of Sciences of Monastir, Research Laboratory of Environmental Chemistry and Clean Processes, 5000Monastir, Tunisia https://orcid.org/0000-0002-5833-0518

DOI:

https://doi.org/10.2298/CICEQ240106022A

Keywords:

Indigo dyeing, density functional theory, ecological process, iron (II) gluconate, process optimization

Abstract

This research paper aims to replace the ecologically harmful sodium dithionite traditionally used in the indigo dyeing process with the iron (II) gluconate reducing agent. The density functional theory (DFT) method using B3LYP 6- 311 G basis set was used to determine the optimized structures of iron (II) gluconate and indigo. The highest occupied molecular orbital (HOMO) energy and the lowest unoccupied molecular orbital (LUMO) energy were calculated, and the electronic properties dependent on HOMO-LUMO energies were determined. Furthermore, an ecological dyeing process using this reducing agent was studied. The influences of alkalinity, reduction temperature, and iron (II) gluconate concentration on the fulfilment of the dyeing process were inspected by measuring the obtained redox potential and the color strength of the dyed samples. A full factorial experiment was performed for statistical analysis and optimization of the dyeing process. The results revealed that the developed method is highly effective and capable of generating redox potential and dyeing quality comparable to those obtained with the conventional process employing sodium dithionite. Finally, the substitution of sodium dithionite by iron (II) gluconate reduced the wastewater load generated by the conventional dyeing process.

References

L. Xiaoyan, K. Wang, M. Wang, W. Zhang, J. Yao, S. Komarneni, J. Clean. Prod. 276 (2020) 123251. https://doi.org/10.1016/j.jclepro.2020.123251

T. M. Hsu, D.H. Welner, Z.N. Russ, B. Cervantes, R. L. Prathuri, P. D. Adams, J. E. Dueber, Nat. Chem. Biol. 24 (2018) 256–261.

https://doi.org/10.1038/nchembio.2552

X.Y. Wang, S.C. Sevov, Chem. Mater. 19 (2007) 4906-4912.

https://doi.org/10.1021/cm071480x

M. Abdelileh, A.P. Manian, D. Rhomberg, M. Ben Ticha, N. Meksi, N. Aguiló-Aguayo, T. Bechtold, J. Clean. Prod. 266 (2020) 121753. https://doi.org/10.1016/j.jclepro.2020.121753.

T. Bechtold, E. Burtscher, A. Turcanu, O. Bobleter, Text. Res. J. 67 (1997) 635-642. https://doi.org/10.1177/004051759706700902.

T. Bechtold, A. Turcanu, J. Appl. Electrochem. 34 (2004) 1221-1227. https://doi.org/10.1007/s10800-004-1707-z.

A. Turcanu, C. Fitz-Binder, T. Bechtold, J. Electroanal. Chem. 654 (2011) 29-37. https://doi.org/10.1016/j.jelechem.2011.01.040

C. Yi, X. Tan, B. Bie, H. Ma, H. Yi, Sci. Rep. 10 (2020) 4927-4928.

https://doi.org/10.1038/s41598-020-61795-5de

Y. Changhai, T. Xiaodong, Z. Yang, X. Jie, Z. Hantao, L. Xueding, Z. Danying, H.Ping, Z. Jin, (Wuhan Textile University), CN201710044213.8A (2017).

L. Xiaoyan, W. MengQian, W. Gang, Y. Jiming, Pigm. Resin. Technol, 50 (2021) 185-193.

http://dx.doi.org/10.1108/PRT-04-2020-0035

N. Meksi, M. Kechida, F. Mhenni, Chem. Eng. J. 131 (2007) 187-193. https://doi.org/10.1016/j.cej.2007.01.001.

N. Meksi, M. Ben Ticha, M. Kechida, M.F. Mhenni, Chem. Res. 49 (2010) 12333-12338.

https://doi.org/10.1021/ie100974

N. Meksi, M. Ben Ticha, M. Kechida, M.F. Mhenni, J. Clean. Prod. 24 (2012) 149-158. https://doi.org/10.1016/j.jclepro.2011.11.062.

J.N. Chakraborty, R.B. Chavan, AATCC Rev. 4 (2004) 17-20.

https://www.researchgate.net/publication/290277788_Dyeing_of_cotton_with_vat_dyes_using _ironII_salt_complexes

J.N. Chakraborty, M. Das, R.B. Chavan, Melliand Int. 12 (2005) 319-323.

https://www.researchgate.net/publication/290652040_Kinetics_of_dyeing_and_properties_of_ ironII_salt_complexes_for_reduction_of_vat_dyes

R.B. Chavan, J.N. Chakraborty, Color. Technol. 117 (2001) 88-94. https://doi.org/10.1111/j.1478-4408.2001.tb00340.x.

T. Koopmans, Physica 1 (1933) 104-113. https://doi.org/10.1016/S0031-8914(34)90011-2

V.C. Mudnoor, J.N. Chakraborty, Fibers Polym. 21 (2020) 1061-1070.

https://doi.org/10.1007/s12221-020-9247-7

J.H. Xin, C.L. Chong, T. Tu, Color. Technol. 116 (2000) 260-265.

https://doi.org/10.1111/j.1478-4408.2000.tb00044.x

P. Kubelka, F. Munk, Zh. Tekh. Fiz. 12 (1931) 593–601. https://www.graphics.cornell.edu/~westin/pubs/kubelka.pdf

M. Ben Ticha, N. Meksi, N. Drira, M. Kechida, M.F. Mhenni, Ind. Crops. Prod. 46 (2013) 350-358. https://doi.org/10.1016/j.indcrop.2013.02.009

F. Harrlekas, Doctoral thesis, Institut National Polytechnique de Lorraine (2008). https://hal.univ-lorraine.fr/tel-01752986/document

J. Rodier, C. Bazin, J. Broutin, P. Chambon, H. Champsaur, L. Rodi, L’analyse de l’eau : Eaux naturelles eaux résiduaires eaux de mer, Dunod, Paris (1996), p.1384. ISBN : 978-2-10-002416-2. 24. M.E.R. Carmona, M.A.P. Da Silva, S.G.F. Leite, Process Biochem. 40 (2005) 779–788. http://doi.org/10.1016/j.procbio.2004.02.024

A.Y. Musa, A.H. Kadhum, A.B. Mohamad, A.A. Rahoma, H. Mesmari, J. Mol. Struct. 969 (2010) 233-237. http://doi.org/10.1016/j.molstruc.2010.02.051

G. Gece, S. Bilgic, Corros. Sci. 51 (2009) 1876-1878. https://doi.org/10.1016/j.corsci.2009.04.003

I.B. Obot, N.O. Obi-Egbedi, S.A. Umoren, Int. J. Electrochem. Sci. 4 (2009) 863-877.

https://www.researchgate.net/publication/261725755_Adsorption_Characteristics_and_Corrosion_Inhibitive_Properties_of_Clotrimazole_for_Aluminium_Corrosion_in_Hydrochloric_Acid

K. Sayin, D. Karakaş, N. Karakuş, T.A. Sayin, Z. Zaim, S.E. Kariper, Polyhedron 90 (2015) 139-146. https://doi.org/10.1016/j.poly.2015.01.047

K. Fukui, Science 218 (1982) 747-754.

https://www.science.org/doi/10.1126/science.218.4574.747

T. Karakurt, M. Dinçer, A. Çukurovalı, I. Yılmaz, J. Mol. Struct. 991 (2011) 186-201.

https://doi.org/10.1016/j.molstruc.2012.05.022

Downloads

Published

20.06.2024

Issue

Section

Articles

How to Cite

An environmentally friendly indigo dyeing process using iron (II) gluconate as a reducing agent: Original scientific paper. (2024). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ240106022A

Similar Articles

11-20 of 95

You may also start an advanced similarity search for this article.