An environmentally friendly indigo dyeing process using iron (II) gluconate as a reducing agent Original scientific paper

Main Article Content

Maha Abdelileh
https://orcid.org/0000-0001-7260-3458
Manel Ben Ticha
https://orcid.org/0000-0002-9273-6087
Nizar Meksi
https://orcid.org/0000-0001-7794-5246
Hatem Dhaouadi
https://orcid.org/0000-0002-5833-0518

Abstract

This research paper aims to replace the ecologically harmful sodium dithionite traditionally used in the indigo dyeing process with the iron (II) gluconate reducing agent. The density functional theory (DFT) method using B3LYP 6- 311 G basis set was used to determine the optimized structures of iron (II) gluconate and indigo. The highest occupied molecular orbital (HOMO) energy and the lowest unoccupied molecular orbital (LUMO) energy were calculated, and the electronic properties dependent on HOMO-LUMO energies were determined. Furthermore, an ecological dyeing process using this reducing agent was studied. The influences of alkalinity, reduction temperature, and iron (II) gluconate concentration on the fulfilment of the dyeing process were inspected by measuring the obtained redox potential and the color strength of the dyed samples. A full factorial experiment was performed for statistical analysis and optimization of the dyeing process. The results revealed that the developed method is highly effective and capable of generating redox potential and dyeing quality comparable to those obtained with the conventional process employing sodium dithionite. Finally, the substitution of sodium dithionite by iron (II) gluconate reduced the wastewater load generated by the conventional dyeing process.

Article Details

How to Cite
Abdelileh, M. ., Ben Ticha , M. ., Meksi, N. ., & Dhaouadi, H. . (2024). An environmentally friendly indigo dyeing process using iron (II) gluconate as a reducing agent: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ240106022A
Section
Articles

References

L. Xiaoyan, K. Wang, M. Wang, W. Zhang, J. Yao, S. Komarneni, J. Clean. Prod. 276 (2020) 123251. https://doi.org/10.1016/j.jclepro.2020.123251

T. M. Hsu, D.H. Welner, Z.N. Russ, B. Cervantes, R. L. Prathuri, P. D. Adams, J. E. Dueber, Nat. Chem. Biol. 24 (2018) 256–261.

https://doi.org/10.1038/nchembio.2552

X.Y. Wang, S.C. Sevov, Chem. Mater. 19 (2007) 4906-4912.

https://doi.org/10.1021/cm071480x

M. Abdelileh, A.P. Manian, D. Rhomberg, M. Ben Ticha, N. Meksi, N. Aguiló-Aguayo, T. Bechtold, J. Clean. Prod. 266 (2020) 121753. https://doi.org/10.1016/j.jclepro.2020.121753.

T. Bechtold, E. Burtscher, A. Turcanu, O. Bobleter, Text. Res. J. 67 (1997) 635-642. https://doi.org/10.1177/004051759706700902.

T. Bechtold, A. Turcanu, J. Appl. Electrochem. 34 (2004) 1221-1227. https://doi.org/10.1007/s10800-004-1707-z.

A. Turcanu, C. Fitz-Binder, T. Bechtold, J. Electroanal. Chem. 654 (2011) 29-37. https://doi.org/10.1016/j.jelechem.2011.01.040

C. Yi, X. Tan, B. Bie, H. Ma, H. Yi, Sci. Rep. 10 (2020) 4927-4928.

https://doi.org/10.1038/s41598-020-61795-5de

Y. Changhai, T. Xiaodong, Z. Yang, X. Jie, Z. Hantao, L. Xueding, Z. Danying, H.Ping, Z. Jin, (Wuhan Textile University), CN201710044213.8A (2017).

L. Xiaoyan, W. MengQian, W. Gang, Y. Jiming, Pigm. Resin. Technol, 50 (2021) 185-193.

http://dx.doi.org/10.1108/PRT-04-2020-0035

N. Meksi, M. Kechida, F. Mhenni, Chem. Eng. J. 131 (2007) 187-193. https://doi.org/10.1016/j.cej.2007.01.001.

N. Meksi, M. Ben Ticha, M. Kechida, M.F. Mhenni, Chem. Res. 49 (2010) 12333-12338.

https://doi.org/10.1021/ie100974

N. Meksi, M. Ben Ticha, M. Kechida, M.F. Mhenni, J. Clean. Prod. 24 (2012) 149-158. https://doi.org/10.1016/j.jclepro.2011.11.062.

J.N. Chakraborty, R.B. Chavan, AATCC Rev. 4 (2004) 17-20.

https://www.researchgate.net/publication/290277788_Dyeing_of_cotton_with_vat_dyes_using _ironII_salt_complexes

J.N. Chakraborty, M. Das, R.B. Chavan, Melliand Int. 12 (2005) 319-323.

https://www.researchgate.net/publication/290652040_Kinetics_of_dyeing_and_properties_of_ ironII_salt_complexes_for_reduction_of_vat_dyes

R.B. Chavan, J.N. Chakraborty, Color. Technol. 117 (2001) 88-94. https://doi.org/10.1111/j.1478-4408.2001.tb00340.x.

T. Koopmans, Physica 1 (1933) 104-113. https://doi.org/10.1016/S0031-8914(34)90011-2

V.C. Mudnoor, J.N. Chakraborty, Fibers Polym. 21 (2020) 1061-1070.

https://doi.org/10.1007/s12221-020-9247-7

J.H. Xin, C.L. Chong, T. Tu, Color. Technol. 116 (2000) 260-265.

https://doi.org/10.1111/j.1478-4408.2000.tb00044.x

P. Kubelka, F. Munk, Zh. Tekh. Fiz. 12 (1931) 593–601. https://www.graphics.cornell.edu/~westin/pubs/kubelka.pdf

M. Ben Ticha, N. Meksi, N. Drira, M. Kechida, M.F. Mhenni, Ind. Crops. Prod. 46 (2013) 350-358. https://doi.org/10.1016/j.indcrop.2013.02.009

F. Harrlekas, Doctoral thesis, Institut National Polytechnique de Lorraine (2008). https://hal.univ-lorraine.fr/tel-01752986/document

J. Rodier, C. Bazin, J. Broutin, P. Chambon, H. Champsaur, L. Rodi, L’analyse de l’eau : Eaux naturelles eaux résiduaires eaux de mer, Dunod, Paris (1996), p.1384. ISBN : 978-2-10-002416-2. 24. M.E.R. Carmona, M.A.P. Da Silva, S.G.F. Leite, Process Biochem. 40 (2005) 779–788. http://doi.org/10.1016/j.procbio.2004.02.024

A.Y. Musa, A.H. Kadhum, A.B. Mohamad, A.A. Rahoma, H. Mesmari, J. Mol. Struct. 969 (2010) 233-237. http://doi.org/10.1016/j.molstruc.2010.02.051

G. Gece, S. Bilgic, Corros. Sci. 51 (2009) 1876-1878. https://doi.org/10.1016/j.corsci.2009.04.003

I.B. Obot, N.O. Obi-Egbedi, S.A. Umoren, Int. J. Electrochem. Sci. 4 (2009) 863-877.

https://www.researchgate.net/publication/261725755_Adsorption_Characteristics_and_Corrosion_Inhibitive_Properties_of_Clotrimazole_for_Aluminium_Corrosion_in_Hydrochloric_Acid

K. Sayin, D. Karakaş, N. Karakuş, T.A. Sayin, Z. Zaim, S.E. Kariper, Polyhedron 90 (2015) 139-146. https://doi.org/10.1016/j.poly.2015.01.047

K. Fukui, Science 218 (1982) 747-754.

https://www.science.org/doi/10.1126/science.218.4574.747

T. Karakurt, M. Dinçer, A. Çukurovalı, I. Yılmaz, J. Mol. Struct. 991 (2011) 186-201.

https://doi.org/10.1016/j.molstruc.2012.05.022